We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Flood frequency estimation by continuous simula...
View graph of relations

« Back

Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic.

Research output: Contribution to journalJournal article


<mark>Journal publication date</mark>15/06/2004
<mark>Journal</mark>Journal of Hydrology
Number of pages20
<mark>Original language</mark>English


This paper applies a continuous simulation approach to the estimation of flood frequency for a dam site in a large catchment (1186 km2) in the Czech Republic. The models used allow for the simulation of both high intensity and low intensity rainfall events, and snowmelt events, over subcatchments in contributing to the flood frequency distribution. The methodology is implemented within a Generalised Likelihood Uncertainty Estimation framework that allows for uncertainty in the model parameters and for the realisation effect in reproducing the apparent statistics of potential flood events represented by the short series of observations. A fuzzy rules method is used to evaluate each model run, based on the available observations of peak discharges, flow duration curves and snow water equivalents. This yields a combined likelihood measure that is used to weight the flood predictions for each behavioural parameter set. The cumulative distribution for flood peaks for any chosen probability of exceedence over all behavioural models can then be estimated. This can be used to assess the risk of a potential flood peak (or duration or volume) within a risk based dam safety assessment.