Home > Research > Publications & Outputs > Form and function of tropical macroalgal reefs ...

Electronic data

  • FultonWilson_etal_FE_SpecIssueMS_final

    Rights statement: This is the peer reviewed version of the following article: Fulton CJ, Abesamis RA, Berkström C, et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct Ecol. 2019;00:1–11. https://doi.org/10.1111/1365-2435.13282 which has been published in final form at https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13282 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

    Accepted author manuscript, 1.12 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Form and function of tropical macroalgal reefs in the Anthropocene

Research output: Contribution to journalJournal article

Published
  • C.J. Fulton
  • R.A. Abesamis
  • C. Berkström
  • M. Depczynski
  • N.A.J. Graham
  • T.H. Holmes
  • M. Kulbicki
  • M.M. Noble
  • B.T. Radford
  • S. Tano
  • P. Tinkler
  • T. Wernberg
  • S.K. Wilson
Close
<mark>Journal publication date</mark>1/06/2019
<mark>Journal</mark>Functional Ecology
Issue number6
Volume33
Number of pages11
Pages (from-to)989-999
Publication StatusPublished
Early online date29/01/19
<mark>Original language</mark>English

Abstract

1. Tropical reefs have been subjected to a range of anthropogenic pressures such as global climate change, overfishing and eutrophication that have raised questions about the prominence of macroalgae on tropical reefs, whether they pose a threat to biodiversity, and how they may influence the function of tropical marine ecosystems. 2. We synthesise current understanding of the structure and function of tropical macroalgal reefs, and how they may support various ecosystem goods and services. We then forecast how key stressors may alter the role of macroalgal reefs in tropical seascapes of the Anthropocene. 3. High levels of primary productivity from tropical canopy macroalgae, which rivals that of other key producers (e.g., corals, turf algae), can be widely dispersed across tropical seascapes to provide a boost of secondary productivity in a range of biomes that include coral reefs, and support periodic harvests of macroalgal biomass for industrial and agricultural uses. Complex macroalgal reefs that comprise a mixture of canopy and understory taxa can also provide key habitats for a diverse community of epifauna, as well as juvenile and adult fishes that are the basis for important tropical fisheries. 4. Key macroalgal taxa (e.g., Sargassum) that form complex macroalgal reefs are likely to be sensitive to future climate change. Increases in maximum sea temperature, in particular, could depress biomass production and/or drive phenological shifts in canopy formation that will affect their capacity to support tropical marine ecosystems. 5. Macroalgal reefs can support a suite of tropical marine ecosystem functions when embedded within an interconnected mosaic of habitat types. Habitat connectivity is, therefore, essential if we are to maintain tropical marine biodiversity alongside key ecosystem goods and services. Consequently, complex macroalgal reefs should be treated as a key ecological asset in strategies for the conservation and management of diverse tropical seascapes.

Bibliographic note

This is the peer reviewed version of the following article: Fulton CJ, Abesamis RA, Berkström C, et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct Ecol. 2019;00:1–11. https://doi.org/10.1111/1365-2435.13282 which has been published in final form at https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2435.13282 This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.