12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Functional shifts of grassland soil communities...
View graph of relations

« Back

Functional shifts of grassland soil communities in response to soil warming

Research output: Contribution to journalJournal article

Published

  • Maria Jesus Inglesias Briones
  • Nick Ostle
  • Niall P. McNamara
  • Jan Poskitt
Article number41
Journal publication date02/2009
JournalSoil Biology and Biochemistry
Journal number2
Volume41
Number of pages8
Pages315-322
Original languageEnglish

Abstract

organisms critical to the global carbon cycle. Temperate grassland ecosystems, contain large, diverse and active soil meso- and macrofauna decomposer communities. Understanding the effects of climate change on their ecology offers a first step towards meaningful predictions of changes in soil organic carbon
mineralisation.
We examined the effects of soil warming on the abundance, diversity and ecology of temperate grassland soil fauna functional groups, ecosystem net CO2 flux and respiration and plant above- and below-ground productivity in a 2-year plant–soil mesocosm experiment. Low voltage heating cable mounted on a framework of stainless steel mesh provided a constant 3.5 C difference between control and warmed mesocosm soils.
Results showed that this temperature increment had little effect on soil respiration and above-ground plant biomass. There was, however, a significant effect on the soil fauna due to warmer conditions and increased root growth, with significant decreases in the numbers in the large oligochaete groups and Prostigmata mites and the re-distribution of enchytraeids to deeper soil layers. Functional groups
exhibited individualistic responses to soil warming, with the total disappearance of epigeic species in the case of the ecosystem engineers and an increased diversity of fungivorous mites that, together, produced significant changes in the composition and trophic structure of the fauna community.
The observed switch towards a fungal driven food web has important implications for the fate of soil organic carbon in temperate ecosystems subjected to sustained warming. Accordingly, soil biology needs to be properly incorporated in C models to make better predictions of the fate of SOC under warmer scenarios.