We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Higgs inflation and naturalness
View graph of relations

« Back

Higgs inflation and naturalness

Research output: Contribution to journalJournal article


Article number15
Journal publication date2010
JournalJournal of Cosmology and Astroparticle Physics
Number of pages10
Original languageEnglish


Inflation based on scalar fields which are non-minimally coupled to gravity has been proposed as a way to unify inflation with weak-scale physics, with the inflaton being identified with the Higgs boson or other weak-scale scalar article. These models require a large non-minimal coupling xi ~ 10^{4} to have agreement with the observed density perturbations. However, it has been suggested that such models are unnatural, due to an apparent breakdown of the calculation of Higgs-Higgs scattering via graviton exchange in the Jordan frame. Here we argue that Higgs inflation models are in fact natural and that the breakdown does not imply new physics due to strong-coupling effects or unitarity breakdown, but simply a failure of perturbation theory in the Jordan frame as a calculational method. This can be understood by noting that the model is completely consistent when analysed in the Einstein frame and that scattering rates in the two frames are equal by the Equivalence Theorem for non-linear field redefinitions.

Bibliographic note

6 pages, LaTeX, additional discussion. An addendum comments on recent developments