12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > High-resolution measurement of pore saturation ...
View graph of relations

« Back

High-resolution measurement of pore saturation and colloid removal efficiency in quartz sand using fluorescence imaging.

Research output: Contribution to journalJournal article

Published

Journal publication date15/12/2007
JournalEnvironmental Science and Technology
Journal number24
Volume41
Number of pages7
Pages8288-8294
Original languageEnglish

Abstract

Colloid deposition in unsaturated, nonuniform porous media is poorly explained by current models and difficult to measure using breakthrough curves and retained mass profiles. We present new methods which enable time-lapse fluorescence imaging to quantify variations in pore saturation, θ, and colloid deposition in 2D, nonuniform unsaturated flow fields. Calibration experiments revealed direct proportionality between fluorescence F and θ in 20/30 mesh quartz sand. Analysis of breakthrough data in fluorescence images allows quantification of the mean mobile concentration, mean deposition rate, and hence the colloid removal efficiency η directly from data at the pixel-scale throughout the flow field. We imaged carboxylate-modified latex microspheres from a point source in saturated flow and unsaturated flow across a capillary fringe at 10−3, 10−2, and 10−1 M NaCl. Total numbers of colloids deposited and values of η increased with ionic strength. We modeled the observed variations in η with θ to estimate the partitioning of colloid deposition between air–water and solid–water interfaces. In the broad saturation range 0.2 < θ < 1, our results suggest that only at the lowest ionic strength, where deposition at solid–water interfaces was strongly unfavorable, did colloid deposition associated with air–water interfaces significantly influence the total colloid removal.