Home > Research > Publications & Outputs > High-resolution maps of the characteristic ener...

Electronic data

Links

Text available via DOI:

View graph of relations

High-resolution maps of the characteristic energy of precipitating auroral particles

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

High-resolution maps of the characteristic energy of precipitating auroral particles. / Kosch, M.J.; Honary, F.; del Pozo, C.F. et al.
In: Journal of Geophysical Research, Vol. 106, No. A12, 12.2001, p. 28925-28937.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Kosch, MJ, Honary, F, del Pozo, CF, Marple, SR & Hagfors, T 2001, 'High-resolution maps of the characteristic energy of precipitating auroral particles', Journal of Geophysical Research, vol. 106, no. A12, pp. 28925-28937. https://doi.org/10.1029/2001JA900107

APA

Vancouver

Kosch MJ, Honary F, del Pozo CF, Marple SR, Hagfors T. High-resolution maps of the characteristic energy of precipitating auroral particles. Journal of Geophysical Research. 2001 Dec;106(A12):28925-28937. doi: 10.1029/2001JA900107

Author

Kosch, M.J. ; Honary, F. ; del Pozo, C.F. et al. / High-resolution maps of the characteristic energy of precipitating auroral particles. In: Journal of Geophysical Research. 2001 ; Vol. 106, No. A12. pp. 28925-28937.

Bibtex

@article{8289d266c6b548e386c5eebdc3ae3773,
title = "High-resolution maps of the characteristic energy of precipitating auroral particles",
abstract = "For the first time we produce high-resolution maps of the characteristic energy of precipitating electrons from ground-based instrumentation in the auroral zone over northern Scandinavia. This is done by combining intensity-calibrated optical data at 557.7 nm from the Digital All-Sky Imager (DASI) with auroral absorption images from the Imaging Riometer for Ionospheric Studies (IRIS). Energy maps are produced with high temporal (10 s) and spatial (10 km) resolution within a common geographic area of 240 × 240 km. Both IRIS and DASI have the European Incoherent Scatter (EISCAT) radar within their common field of view. EISCAT is capable of making accurate measurements of the electron density height profile which, with the assistance of an atmospheric model, are inverted into equivalent energy spectra of the flux of precipitating electrons. However, incoherent scatter radars generally have a very small field of view (<1°), making studies of the energy spectrum of the precipitating particles over a wide field of view impractical. Since IRIS and DASI are sensitive to high- and medium-energy electrons, respectively, EISCAT data are used to calibrate the characteristic energy of the precipitating particles for an assumed energy spectrum against a combination of IRIS and DASI data. This empirical calibration is then used throughout the common field of view of IRIS and DASI. An initial study illustrates the spatial relationship between the different energy ranges during a substorm onset and illustrates a new way to interpret auroral phenomena.",
keywords = "riometer, ASC DCS-publications-id, art-229, DCS-publications-credits, dasi, iono-fa, iris, scasi, DCS-publications-personnel-id, 7, 5, 8, 4, 56",
author = "M.J. Kosch and F. Honary and {del Pozo}, C.F. and S.R. Marple and T. Hagfors",
note = "Copyright (2001) American Geophysical Union.",
year = "2001",
month = dec,
doi = "10.1029/2001JA900107",
language = "English",
volume = "106",
pages = "28925--28937",
journal = "Journal of Geophysical Research",
issn = "0148-0227",
publisher = "American Geophysical Union",
number = "A12",

}

RIS

TY - JOUR

T1 - High-resolution maps of the characteristic energy of precipitating auroral particles

AU - Kosch, M.J.

AU - Honary, F.

AU - del Pozo, C.F.

AU - Marple, S.R.

AU - Hagfors, T.

N1 - Copyright (2001) American Geophysical Union.

PY - 2001/12

Y1 - 2001/12

N2 - For the first time we produce high-resolution maps of the characteristic energy of precipitating electrons from ground-based instrumentation in the auroral zone over northern Scandinavia. This is done by combining intensity-calibrated optical data at 557.7 nm from the Digital All-Sky Imager (DASI) with auroral absorption images from the Imaging Riometer for Ionospheric Studies (IRIS). Energy maps are produced with high temporal (10 s) and spatial (10 km) resolution within a common geographic area of 240 × 240 km. Both IRIS and DASI have the European Incoherent Scatter (EISCAT) radar within their common field of view. EISCAT is capable of making accurate measurements of the electron density height profile which, with the assistance of an atmospheric model, are inverted into equivalent energy spectra of the flux of precipitating electrons. However, incoherent scatter radars generally have a very small field of view (<1°), making studies of the energy spectrum of the precipitating particles over a wide field of view impractical. Since IRIS and DASI are sensitive to high- and medium-energy electrons, respectively, EISCAT data are used to calibrate the characteristic energy of the precipitating particles for an assumed energy spectrum against a combination of IRIS and DASI data. This empirical calibration is then used throughout the common field of view of IRIS and DASI. An initial study illustrates the spatial relationship between the different energy ranges during a substorm onset and illustrates a new way to interpret auroral phenomena.

AB - For the first time we produce high-resolution maps of the characteristic energy of precipitating electrons from ground-based instrumentation in the auroral zone over northern Scandinavia. This is done by combining intensity-calibrated optical data at 557.7 nm from the Digital All-Sky Imager (DASI) with auroral absorption images from the Imaging Riometer for Ionospheric Studies (IRIS). Energy maps are produced with high temporal (10 s) and spatial (10 km) resolution within a common geographic area of 240 × 240 km. Both IRIS and DASI have the European Incoherent Scatter (EISCAT) radar within their common field of view. EISCAT is capable of making accurate measurements of the electron density height profile which, with the assistance of an atmospheric model, are inverted into equivalent energy spectra of the flux of precipitating electrons. However, incoherent scatter radars generally have a very small field of view (<1°), making studies of the energy spectrum of the precipitating particles over a wide field of view impractical. Since IRIS and DASI are sensitive to high- and medium-energy electrons, respectively, EISCAT data are used to calibrate the characteristic energy of the precipitating particles for an assumed energy spectrum against a combination of IRIS and DASI data. This empirical calibration is then used throughout the common field of view of IRIS and DASI. An initial study illustrates the spatial relationship between the different energy ranges during a substorm onset and illustrates a new way to interpret auroral phenomena.

KW - riometer

KW - ASC DCS-publications-id

KW - art-229

KW - DCS-publications-credits

KW - dasi

KW - iono-fa

KW - iris

KW - scasi

KW - DCS-publications-personnel-id

KW - 7

KW - 5

KW - 8

KW - 4

KW - 56

U2 - 10.1029/2001JA900107

DO - 10.1029/2001JA900107

M3 - Journal article

VL - 106

SP - 28925

EP - 28937

JO - Journal of Geophysical Research

JF - Journal of Geophysical Research

SN - 0148-0227

IS - A12

ER -