Home > Research > Publications & Outputs > Improved spatial ecological sampling using open...

Associated organisational unit

Links

Text available via DOI:

View graph of relations

Improved spatial ecological sampling using open data and standardization: an example from malaria mosquito surveillance

Research output: Contribution to journalJournal article

Published
  • Luigi Sedda
  • Eric R Lucas
  • Luc S Djogbenou
  • Ako V.C. Edi
  • Alexander Egyr-Yawson
  • Bilali I Kabula
  • Janet Midega
  • Eric Ochomo
  • David Weetman
  • Martin J. Donnelly
Close
Article number20180941
<mark>Journal publication date</mark>10/04/2019
<mark>Journal</mark>Interface
Issue number153
Volume16
Number of pages12
Publication statusPublished
Original languageEnglish

Abstract

Vector-borne disease control relies on efficient vector surveillance, mostly carried out using traps whose number and locations are often determined by expert opinion rather than a rigorous quantitative sampling design. In this work we propose a framework for ecological sampling design which in its preliminary stages can take into account environmental conditions obtained from open data (i.e. remote sensing and meteorological stations) not necessarily designed for ecological analysis. These environmental data are used to delimit the area into ecologically homogeneous strata. By employing Bayesian statistics within a model-based sampling design, the traps are deployed among the strata using a mixture of random and grid locations which allows balancing predictions and model-fitting accuracies. Sample sizes and the effect of ecological strata on sample sizes are estimated from previous mosquito sampling campaigns open data. Notably, we found that a configuration of 30 locations with four households each (120 samples) will have a similar accuracy in the predictions of mosquito abundance as 200 random samples. In addition, we show that random sampling independently from ecological strata, produces biased estimates of the mosquito abundance. Finally, we propose standardizing reporting of sampling designs to allow transparency and repetition/re-use in subsequent sampling campaigns.