Home > Research > Publications & Outputs > Improving and testing geochemical speciation pr...
View graph of relations

Improving and testing geochemical speciation predictions of metal ions in natural waters

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Improving and testing geochemical speciation predictions of metal ions in natural waters. / Ahmed, Imad A. M.; Hamilton-Taylor, John; Bieroza, Magdalena et al.
In: Water Resources Research, Vol. 67, 15.12.2014, p. 276-291.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Ahmed IAM, Hamilton-Taylor J, Bieroza M, Zhang H, Davison W. Improving and testing geochemical speciation predictions of metal ions in natural waters. Water Resources Research. 2014 Dec 15;67:276-291. Epub 2014 Sept 18. doi: 10.1016/j.watres.2014.09.004

Author

Bibtex

@article{d5947552d2ca4711b7b30111c3d7f0d3,
title = "Improving and testing geochemical speciation predictions of metal ions in natural waters",
abstract = "The ability of WHAM VII and NICA-Donnan models to predict free-ion activities of Cu in natural waters was examined from two perspectives, (i) the presence of EDTA and NTA contaminants, (ii) the need to improve estimates of HA and FA concentrations. Potentiometric responses of a Cu(II) ion-selective electrode were investigated in five assays containing dissolved organic matter (DOM) isolated from a series of polluted (urban) and relatively unpolluted (upland) streams in northern England. The [Cu]/[DOC] ratio in these assays spanned an environmentally realistic range of ∼1-500 μmol/g. Reasonably good agreement between measured and predicted Cu(2+) activities was obtained with both WHAM VII and NICA-Donnan models, assuming 65% of DOM as fulvic acid and including the measured EDTA and NTA concentrations, but generally the models overestimated the activities by a factor of ∼2. In contrast, the models over-predicted the Cu(2+) activities by up to 2 orders of magnitude at low [Cu]/[DOC] ratios in urban waters if anthropogenic ligands were not included in the model simulations. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy was used to measure the functional properties of the isolated DOM and to estimate the fractions of FA and HA present. Using these fractions in the models gave improvements in predictions compared to the 65% FA assumption, as shown by higher correlations, reduced error and reduced bias. These results highlight various issues with the use of the available speciation models for predicting free ion concentrations in natural waters, such as the use of the Biotic Ligand Model (BLM) for the derivation of environmental standards. It is clearly necessary to measure EDTA and NTA in waters with urban influences, while fluorescence measurements offer the possibility of appreciably improving the accuracy of predictions.",
keywords = "Chemical speciation, Dissolved organic matter , EDTA , Fluorescence , Freshwater , Ion selective electrode , NICA-Donnan , PARAFAC , WHAM",
author = "Ahmed, {Imad A. M.} and John Hamilton-Taylor and Magdalena Bieroza and Hao Zhang and William Davison",
year = "2014",
month = dec,
day = "15",
doi = "10.1016/j.watres.2014.09.004",
language = "English",
volume = "67",
pages = "276--291",
journal = "Water Resources Research",
issn = "0043-1397",
publisher = "AMER GEOPHYSICAL UNION",

}

RIS

TY - JOUR

T1 - Improving and testing geochemical speciation predictions of metal ions in natural waters

AU - Ahmed, Imad A. M.

AU - Hamilton-Taylor, John

AU - Bieroza, Magdalena

AU - Zhang, Hao

AU - Davison, William

PY - 2014/12/15

Y1 - 2014/12/15

N2 - The ability of WHAM VII and NICA-Donnan models to predict free-ion activities of Cu in natural waters was examined from two perspectives, (i) the presence of EDTA and NTA contaminants, (ii) the need to improve estimates of HA and FA concentrations. Potentiometric responses of a Cu(II) ion-selective electrode were investigated in five assays containing dissolved organic matter (DOM) isolated from a series of polluted (urban) and relatively unpolluted (upland) streams in northern England. The [Cu]/[DOC] ratio in these assays spanned an environmentally realistic range of ∼1-500 μmol/g. Reasonably good agreement between measured and predicted Cu(2+) activities was obtained with both WHAM VII and NICA-Donnan models, assuming 65% of DOM as fulvic acid and including the measured EDTA and NTA concentrations, but generally the models overestimated the activities by a factor of ∼2. In contrast, the models over-predicted the Cu(2+) activities by up to 2 orders of magnitude at low [Cu]/[DOC] ratios in urban waters if anthropogenic ligands were not included in the model simulations. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy was used to measure the functional properties of the isolated DOM and to estimate the fractions of FA and HA present. Using these fractions in the models gave improvements in predictions compared to the 65% FA assumption, as shown by higher correlations, reduced error and reduced bias. These results highlight various issues with the use of the available speciation models for predicting free ion concentrations in natural waters, such as the use of the Biotic Ligand Model (BLM) for the derivation of environmental standards. It is clearly necessary to measure EDTA and NTA in waters with urban influences, while fluorescence measurements offer the possibility of appreciably improving the accuracy of predictions.

AB - The ability of WHAM VII and NICA-Donnan models to predict free-ion activities of Cu in natural waters was examined from two perspectives, (i) the presence of EDTA and NTA contaminants, (ii) the need to improve estimates of HA and FA concentrations. Potentiometric responses of a Cu(II) ion-selective electrode were investigated in five assays containing dissolved organic matter (DOM) isolated from a series of polluted (urban) and relatively unpolluted (upland) streams in northern England. The [Cu]/[DOC] ratio in these assays spanned an environmentally realistic range of ∼1-500 μmol/g. Reasonably good agreement between measured and predicted Cu(2+) activities was obtained with both WHAM VII and NICA-Donnan models, assuming 65% of DOM as fulvic acid and including the measured EDTA and NTA concentrations, but generally the models overestimated the activities by a factor of ∼2. In contrast, the models over-predicted the Cu(2+) activities by up to 2 orders of magnitude at low [Cu]/[DOC] ratios in urban waters if anthropogenic ligands were not included in the model simulations. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy was used to measure the functional properties of the isolated DOM and to estimate the fractions of FA and HA present. Using these fractions in the models gave improvements in predictions compared to the 65% FA assumption, as shown by higher correlations, reduced error and reduced bias. These results highlight various issues with the use of the available speciation models for predicting free ion concentrations in natural waters, such as the use of the Biotic Ligand Model (BLM) for the derivation of environmental standards. It is clearly necessary to measure EDTA and NTA in waters with urban influences, while fluorescence measurements offer the possibility of appreciably improving the accuracy of predictions.

KW - Chemical speciation

KW - Dissolved organic matter

KW - EDTA

KW - Fluorescence

KW - Freshwater

KW - Ion selective electrode

KW - NICA-Donnan

KW - PARAFAC

KW - WHAM

U2 - 10.1016/j.watres.2014.09.004

DO - 10.1016/j.watres.2014.09.004

M3 - Journal article

C2 - 25286438

VL - 67

SP - 276

EP - 291

JO - Water Resources Research

JF - Water Resources Research

SN - 0043-1397

ER -