12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > In situ measurements of dissociation kinetics a...
View graph of relations

« Back

In situ measurements of dissociation kinetics and labilities of metal complexes in synthetic solutions using DGT.

Research output: Contribution to journalJournal article

Published

Journal publication date1/04/2003
JournalEnvironmental Science and Technology
Volume37
Number of pages6
Pages1379-1384
Original languageEnglish

Abstract

The technique of diffusive gradients in thin films (DGT) binds metal ions to a resin after they have diffused through a well-defined layer of gel. If metal complexes dissociate in this diffusion layer, they will in principle be measured. By varying the thickness of the layer the extent of metal dissociation can be controlled. These principles were used to examine the lability of metal complexes, and, where possible, to determine the dissociation rate constant. DGT measurements were made using devices with a range of diffusive layer thicknesses (0.16-2.0 mm) in solutions containing copper or nickel in the absence and presence of nitrilotriacetic acid (NTA). Rate expressions were derived to relate the transfer kinetics to the effective measurement time of DGT. The dependence of DGT measurements on diffusion layer thickness can be modeled assuming a dissociation rate constant, k-1, of 3.6 ± 0.5 × 10-5s-1 for NiNTA-. CuNTA- was found to be fully labile, with k-1 > 0.012 s-1. The results agreed well with the limited rate data available in the literature. This work has demonstrated, for the first time, the validity of the assumption that only the free metal ion and not the metal complex, reacts with the binding resin of the DGT device. DGT therefore has the potential to distinguish between adjunctive and disjunctive mechanisms of complex dissociation. Because DGT can be readily deployed in situ, in natural waters, soils, and sediments, it opens up the possibility of directly obtaining kinetic information in natural or contaminated environmental systems.

Bibliographic note

Scally was a joint PhD student between HZ and WD. HZ led the design of the experiments, interpretation of the results and the writing and is corresponding author. This first use of DGT for measuring dissociation kinetics introduced new theory. Citations: 34. RAE_import_type : Journal article RAE_uoa_type : Earth Systems and Environmental Sciences