We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Influence of triplet instabilities in TDDFT
View graph of relations

« Back

Influence of triplet instabilities in TDDFT

Research output: Contribution to journalJournal article


Journal publication date11/2011
JournalJournal of chemical theory and computation
Journal number11
Number of pages8
Original languageEnglish


Singlet and triplet vertical excitation energies from time-dependent density functional theory (TDDFT) can be affected in different ways by the inclusion of exact exchange in hybrid or Coulomb-attenuated/range-separated exchange-correlation functionals; in particular, triplet excitation energies can become significantly too low. To investigate these issues, the explicit dependence of excitation energies on exact exchange is quantified for four representative molecules, paying attention to the effect of constant, short-range, and long-range contributions. A stability analysis is used to verify that the problematic TDDFT triplet excitations can be understood in terms of the ground state triplet instability problem, and it is proposed that a Hartree-Fock stability analysis should be used to identify triplet excitations for which the presence of exact exchange in the TDDFT functional is undesirable. The use of the Tamm-Dancoff approximation (TDA) significantly improves the problematic triplet excitation energies, recovering the correct state ordering in benzoquinone; it also affects the corresponding singlet states, recovering the correct state ordering in naphthalene. The impressive performance of the TDA is maintained for a wide range of molecules across representative functionals.