12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Intercalibration of Boreal and Tethyan timescal...
View graph of relations

« Back

Intercalibration of Boreal and Tethyan timescales: the magneto-biostratigraphy of the Middle Triassic and the latest Early Triassic from Spitsbergen, Arctic Norway

Research output: Contribution to journalJournal article

Published

Journal publication date12/2008
JournalPolar Research
Journal number3
Volume27
Number of pages22
Pages469-490
Original languageEnglish

Abstract

An integrated bio-magnetostratigraphic study of the latest Early Triassic to the upper parts of the Middle Triassic, at Milne Edwardsfjellet in central Spitsbergen, Svalbard, allows a detailed correlation of Boreal and Tethyan biostratigraphies. The biostratigraphy consists of ammonoid and palynomorph zonations, supported by conodonts, through some 234 m of succession in two adjacent sections. The magnetostratigraphy consists of ten substantive normal–reverse polarity chrons defined by sampling at 150 stratigraphic levels. The magnetization is carried by magnetite and an unidentified magnetic sulphide, and is difficult to fully separate from a strong present-day like magnetization. The bio-magnetostratigraphy from the late Olenekian (Vendomdalen Member) is supplemented by data from nearby Vikinghøgda. The early and mid-Anisian has a high sedimentation rate, comprising over half the ca. 140-m thickness of the Botneheia Formation, whereas the late Anisian and lower Ladinian is condensed into about 20 m. The two latest Boreal Ladinian ammonoid zones are absent due to erosional truncation below the Tschermakfjellet Formation. Correlation to Tethyan bio-magnetostratigraphies shows the traditional base of the Boreal Anisian (base of G. taimyrensis Zone) precedes the base Anisian (using here definitions based on the Desli Caira section in Romania). The Boreal upper Anisian G. rotelliforme and F. nevadanus ammonoid zones correlate to most of the Tethyan Pelsonian and Illyrian substages. The base Ladinian defined in the Tethyan global boundary stratotype and point (GSSP) is closely equivalent to the traditional base of the Boreal Ladinian at the I. oleshkoi Zone. The latest Olenekian to early Anisian magnetic polarity timescale is refined using the Spitsbergen data.

Bibliographic note

The definitive version is available at www3.interscience.wiley.com