12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Kinetics of the solid-state phase transformatio...
View graph of relations

« Back

Kinetics of the solid-state phase transformation of form beta to gamma of sulfanilamide using time-resolved energy-dispersive X-ray diffraction

Research output: Contribution to journalJournal article

Published

Journal publication date05/1996
JournalChemistry of Materials
Journal number5
Volume8
Number of pages10
Pages1042-1051
Original languageEnglish

Abstract

The kinetics of the solid-state phase transformation of form beta to gamma of sulfanilamide in powdered samples have been investigated using energy-dispersive X-ray diffraction (EDXRD) combined with synchrotron radiation. The beta to gamma transformation which is relatively fast has been followed in real time, courtesy of the high time resolution of the EDXRD method. The data obtained yield alpha-time curves of high accuracy and precision. The observed kinetics are atypical in that the transformation does not always proceed to completion but plateaus off, the rate and extent being higher with increasing temperature. This phenomenon suggests a distribution of activation energies in the powdered samples. Despite this complication the data have been analyzed by considering only the fraction transformed. Of the various kinetic models considered, the Avrami-Erofeyev (n = 3.5) and the Cardew model were found to best describe the data. The data fitting with both of these models, however, was not totally satisfactory. The Avrami-Erofeyev model was found to depart increasingly from the observed data at high alpha values. The Cardew model, being specific for powdered or polycrystalline samples, was significantly better, but only up to alpha values of about 0.85. Above this point the Cardew model deviates markedly from the observed data. Direct visual observation using hot-stage microscopy has revealed that the transformation always proceeds from a single nucleation event in each crystallite and that coalescence of growing surfaces and ingestion of potential nuclei are unimportant, which is consistent with the Cardew model. Also, extinction studies using polarized light have shown that the transformation in the crystallites is generally of the type single crystal to single crystal but does not exhibit any orientational relationship. The overall activation energy and the individual nucleation and growth activation energies for the beta to gamma transformation based on the Cardew model were determined to be 101 +/- 7, 142 +/- 14, and 70 +/- 4 kJ/mol, respectively. The activation energy based on the Avrami-Erofeyev model was 89 +/- 8 kJ/mol. These magnitudes are within the expected range for molecular crystals.