Home > Research > Publications & Outputs > Localised remobilisation of metals in a marine ...
View graph of relations

Localised remobilisation of metals in a marine sediment.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Localised remobilisation of metals in a marine sediment. / Zhang, Hao; Davison, William; Mortimer, Robert et al.
In: Science of the Total Environment, Vol. 296, No. 1-3, 16.09.2002, p. 175-187.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Zhang, H, Davison, W, Mortimer, R, Krom, MD, Hayes, PJ & Davies, IM 2002, 'Localised remobilisation of metals in a marine sediment.', Science of the Total Environment, vol. 296, no. 1-3, pp. 175-187. https://doi.org/10.1016/S0048-9697(02)00078-5

APA

Zhang, H., Davison, W., Mortimer, R., Krom, M. D., Hayes, P. J., & Davies, I. M. (2002). Localised remobilisation of metals in a marine sediment. Science of the Total Environment, 296(1-3), 175-187. https://doi.org/10.1016/S0048-9697(02)00078-5

Vancouver

Zhang H, Davison W, Mortimer R, Krom MD, Hayes PJ, Davies IM. Localised remobilisation of metals in a marine sediment. Science of the Total Environment. 2002 Sept 16;296(1-3):175-187. doi: 10.1016/S0048-9697(02)00078-5

Author

Zhang, Hao ; Davison, William ; Mortimer, Robert et al. / Localised remobilisation of metals in a marine sediment. In: Science of the Total Environment. 2002 ; Vol. 296, No. 1-3. pp. 175-187.

Bibtex

@article{2660336af3114ceab0433b58c747df9f,
title = "Localised remobilisation of metals in a marine sediment.",
abstract = "Trace metals and Fe and Mn were measured at vertical spatial resolutions of 2.5 and 5 mm in the top 35 cm of the profundal sediment of a Scottish sea-loch using DGT (diffusive gradients in thin films) technique. DGT probes lower adjacent metal concentrations in pore waters and induce a flux of metal from the solid phase to porewater. The concentrations of metals in porewaters at the interface of the probe were measured during its deployment in a box core. These measurements reflect porewater concentrations of metals and their rates of resupply from the local solid phase of a very small volume (25 μl) of sediment. There was pronounced horizontal and vertical structure in the interfacial concentrations. Horizontal variations were shown by results from adjacent DGT assemblies being markedly different in detail, while vertical structure was measured directly by the DGT-depth profiles. Iron and Mn varied systematically with depth, with both broad and detailed features of Co aligning with those of Mn. There was, however, evidence of additional localised sources of Co that were apparently unrelated to the redox behaviour that Mn typifies, but associated with the remobilization of Ni, possibly from mineral dissolution. Arsenic(III) was remobilized in well-defined zones. Detailed correspondence of As(III) with some Fe features suggest that its release is mechanistically-related to iron oxide dissolution, but the 3 orders of magnitude higher concentrations of Fe may sometimes obscure the association. These results demonstrate that, within sediments, metals may be released in discrete locations that are not measured by conventional porewater sampling techniques due to their horizontal averaging.",
keywords = "Diffusive gradients in thin films, DGT, Metals, Porewaters, Sediment, Fluxes, Remobilization, Microniche",
author = "Hao Zhang and William Davison and Robert Mortimer and Krom, {Michael D.} and Hayes, {Peter J.} and Davies, {Ian M.}",
year = "2002",
month = sep,
day = "16",
doi = "10.1016/S0048-9697(02)00078-5",
language = "English",
volume = "296",
pages = "175--187",
journal = "Science of the Total Environment",
issn = "0048-9697",
publisher = "Elsevier Science B.V.",
number = "1-3",

}

RIS

TY - JOUR

T1 - Localised remobilisation of metals in a marine sediment.

AU - Zhang, Hao

AU - Davison, William

AU - Mortimer, Robert

AU - Krom, Michael D.

AU - Hayes, Peter J.

AU - Davies, Ian M.

PY - 2002/9/16

Y1 - 2002/9/16

N2 - Trace metals and Fe and Mn were measured at vertical spatial resolutions of 2.5 and 5 mm in the top 35 cm of the profundal sediment of a Scottish sea-loch using DGT (diffusive gradients in thin films) technique. DGT probes lower adjacent metal concentrations in pore waters and induce a flux of metal from the solid phase to porewater. The concentrations of metals in porewaters at the interface of the probe were measured during its deployment in a box core. These measurements reflect porewater concentrations of metals and their rates of resupply from the local solid phase of a very small volume (25 μl) of sediment. There was pronounced horizontal and vertical structure in the interfacial concentrations. Horizontal variations were shown by results from adjacent DGT assemblies being markedly different in detail, while vertical structure was measured directly by the DGT-depth profiles. Iron and Mn varied systematically with depth, with both broad and detailed features of Co aligning with those of Mn. There was, however, evidence of additional localised sources of Co that were apparently unrelated to the redox behaviour that Mn typifies, but associated with the remobilization of Ni, possibly from mineral dissolution. Arsenic(III) was remobilized in well-defined zones. Detailed correspondence of As(III) with some Fe features suggest that its release is mechanistically-related to iron oxide dissolution, but the 3 orders of magnitude higher concentrations of Fe may sometimes obscure the association. These results demonstrate that, within sediments, metals may be released in discrete locations that are not measured by conventional porewater sampling techniques due to their horizontal averaging.

AB - Trace metals and Fe and Mn were measured at vertical spatial resolutions of 2.5 and 5 mm in the top 35 cm of the profundal sediment of a Scottish sea-loch using DGT (diffusive gradients in thin films) technique. DGT probes lower adjacent metal concentrations in pore waters and induce a flux of metal from the solid phase to porewater. The concentrations of metals in porewaters at the interface of the probe were measured during its deployment in a box core. These measurements reflect porewater concentrations of metals and their rates of resupply from the local solid phase of a very small volume (25 μl) of sediment. There was pronounced horizontal and vertical structure in the interfacial concentrations. Horizontal variations were shown by results from adjacent DGT assemblies being markedly different in detail, while vertical structure was measured directly by the DGT-depth profiles. Iron and Mn varied systematically with depth, with both broad and detailed features of Co aligning with those of Mn. There was, however, evidence of additional localised sources of Co that were apparently unrelated to the redox behaviour that Mn typifies, but associated with the remobilization of Ni, possibly from mineral dissolution. Arsenic(III) was remobilized in well-defined zones. Detailed correspondence of As(III) with some Fe features suggest that its release is mechanistically-related to iron oxide dissolution, but the 3 orders of magnitude higher concentrations of Fe may sometimes obscure the association. These results demonstrate that, within sediments, metals may be released in discrete locations that are not measured by conventional porewater sampling techniques due to their horizontal averaging.

KW - Diffusive gradients in thin films

KW - DGT

KW - Metals

KW - Porewaters

KW - Sediment

KW - Fluxes

KW - Remobilization

KW - Microniche

U2 - 10.1016/S0048-9697(02)00078-5

DO - 10.1016/S0048-9697(02)00078-5

M3 - Journal article

VL - 296

SP - 175

EP - 187

JO - Science of the Total Environment

JF - Science of the Total Environment

SN - 0048-9697

IS - 1-3

ER -