We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Longitudinal wave-breaking limits in a unified ...
View graph of relations

« Back

Longitudinal wave-breaking limits in a unified geometric model of relativistic warm plasmas

Research output: Contribution to journalJournal article


Associated organisational unit

Article number075502
Journal publication date19/02/2010
JournalJournal of Physics -London- a Mathematical and General
Number of pages19
Original languageEnglish


The covariant Vlasov–Maxwell system is used to study the breaking of relativistic warm plasma waves. The well-known theory of relativistic warm plasmas due to Katsouleas and Mori (KM) is subsumed within a unified geometric formulation of the 'waterbag' paradigm over spacetime. We calculate the maximum amplitude Emax of nonlinear longitudinal electric waves for a particular class of waterbags whose geometry is a simple three-dimensional generalization (in velocity) of the one-dimensional KM waterbag (in velocity). It has been shown previously that the value of limv → cEmax (with the effective temperature of the plasma electrons held fixed) diverges for the KM model; however, we show that a certain class of simple three-dimensional waterbags exhibit a finite value for limv → cEmax, where v is the phase velocity of the wave and c is the speed of light.