We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Lysine metabolism in higher plants.
View graph of relations

« Back

Lysine metabolism in higher plants.

Research output: Contribution to journalJournal article


<mark>Journal publication date</mark>04/2001
<mark>Journal</mark>Amino Acids
Number of pages19
<mark>Original language</mark>English


The essential amino acid lysine is synthesised in higher plants via a pathway starting with aspartate, that also leads to the formation of threonine, methionine and isoleucine. Enzyme kinetic studies and the analysis of mutants and transgenic plants that overaccumulate lysine, have indicated that the major site of the regulation of lysine synthesis is at the enzyme dihydrodipicolinate synthase. Despite this tight regulation, there is strong evidence that lysine is also subject to catabolism in plants, specifically in the seed. The two enzymes involved in lysine breakdown, lysine 2-oxoglutarate reductase (also known as lysine α-ketoglutarate reductase) and saccharopine dehydrogenase exist as a single bifunctional protein, with the former activity being regulated by lysine availability, calcium and phosphorylation/dephosphorylation.