12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Mathematical modelling of the reaction latency....
View graph of relations

« Back

Mathematical modelling of the reaction latency. Part III : a model of avoidance reaction latency and avoidance learning.

Research output: Contribution to journalJournal article

Published

Journal publication date1982
JournalActa Neurobiologiae Experimentalis
Journal number4-5
Volume42
Number of pages24
Pages397-420
Original languageEnglish

Abstract

The linear-dynamic-stochastic model of a reaction latency as applied to avoidance experiment is presented. Reactions are classified on the basis of the model into following classes: escape, avoidance, late avoidance, three types of inter-trial responses and "no reaction". The experimental latency distribution is split into latency distributions of the escape, avoidance and late avoidance responses, providing a new insight into latency distribution. The results of fitting the model to latency measurements obtained in the avoidance conditioning experiment are presented. The same processes of the parameter changes as in the escape conditioning are discovered, one causing a latency to decrease and the other causing a latency to increase during learning. The first process affects a latency stronger than the second and, consequently, the latency decreases during learning. The second process is responsible for a decay of inter trial-responses during experiment. The value of the correlation coefficient between the threshold of avoidance reaction and the threshold of escape reaction was also estimated. Negative values of this coefficient were obtained, therefore, on the average, the greater the avoidance reaction threshold the smaller the escape one. In the course of learning the correlation coefficient tends to be equal to - 1, i.e., as a result of training, both thresholds became dependent in a functional (non-random) way. This result may provide an objective index of the "state of learning". The model provides a new tool for analysis of results of latency-based experiments.