Home > Research > Publications & Outputs > Measurement of long-range multiparticle azimuth...

Links

Text available via DOI:

View graph of relations

Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p+Pb collisions with the ATLAS detector at the CERN Large Hadron Collider

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p+Pb collisions with the ATLAS detector at the CERN Large Hadron Collider. / The ATLAS collaboration.
In: Physical Review C, Vol. 97, No. 2, 024904, 12.02.2018.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{65ecb4fc331e43c1bbe470d3d9623701,
title = "Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p+Pb collisions with the ATLAS detector at the CERN Large Hadron Collider",
abstract = "A detailed study of multiparticle azimuthal correlations is presented using pp data at √s=5.02 and 13 TeV, and p+Pb data at √sNN=5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants cn{4} and flow coefficients vn{4}=(−cn{4})1/4 for n=2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of cn{4} are obtained as a function of the average number of charged particles per event, ⟨Nch⟩, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to cn{4}. The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c2{4}, and therefore a well-defined v2{4}, nearly independent of ⟨Nch⟩, which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v2{4} is found to be smaller than the v2{2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v2{4} and v2{2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. The results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.",
author = "Barton, {Adam Edward} and Michael Beattie and Bertram, {Iain Alexander} and Guennadi Borissov and Bouhova-Thacker, {Evelina Vassileva} and Harald Fox and Grimm, {Kathryn Ann Tschann} and Henderson, {Robert Charles William} and Jones, {Roger William Lewis} and Vakhtang Kartvelishvili and Long, {Robin Eamonn} and Love, {Peter Allan} and Muenstermann, {Daniel Matthias Alfred} and Parker, {Adam Jackson} and Malcolm Skinner and Maria Smizanska and Walder, {James William} and Andy Wharton and Ben Whitmore and {The ATLAS collaboration}",
note = "Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.",
year = "2018",
month = feb,
day = "12",
doi = "10.1103/PhysRevC.97.024904",
language = "English",
volume = "97",
journal = "Physical Review C",
issn = "0556-2813",
publisher = "American Physical Society",
number = "2",

}

RIS

TY - JOUR

T1 - Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p+Pb collisions with the ATLAS detector at the CERN Large Hadron Collider

AU - Barton, Adam Edward

AU - Beattie, Michael

AU - Bertram, Iain Alexander

AU - Borissov, Guennadi

AU - Bouhova-Thacker, Evelina Vassileva

AU - Fox, Harald

AU - Grimm, Kathryn Ann Tschann

AU - Henderson, Robert Charles William

AU - Jones, Roger William Lewis

AU - Kartvelishvili, Vakhtang

AU - Long, Robin Eamonn

AU - Love, Peter Allan

AU - Muenstermann, Daniel Matthias Alfred

AU - Parker, Adam Jackson

AU - Skinner, Malcolm

AU - Smizanska, Maria

AU - Walder, James William

AU - Wharton, Andy

AU - Whitmore, Ben

AU - The ATLAS collaboration

N1 - Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.

PY - 2018/2/12

Y1 - 2018/2/12

N2 - A detailed study of multiparticle azimuthal correlations is presented using pp data at √s=5.02 and 13 TeV, and p+Pb data at √sNN=5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants cn{4} and flow coefficients vn{4}=(−cn{4})1/4 for n=2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of cn{4} are obtained as a function of the average number of charged particles per event, ⟨Nch⟩, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to cn{4}. The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c2{4}, and therefore a well-defined v2{4}, nearly independent of ⟨Nch⟩, which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v2{4} is found to be smaller than the v2{2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v2{4} and v2{2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. The results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.

AB - A detailed study of multiparticle azimuthal correlations is presented using pp data at √s=5.02 and 13 TeV, and p+Pb data at √sNN=5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants cn{4} and flow coefficients vn{4}=(−cn{4})1/4 for n=2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of cn{4} are obtained as a function of the average number of charged particles per event, ⟨Nch⟩, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to cn{4}. The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c2{4}, and therefore a well-defined v2{4}, nearly independent of ⟨Nch⟩, which implies that the long-range multiparticle azimuthal correlations persist to events with low multiplicity. Furthermore, v2{4} is found to be smaller than the v2{2} measured using the two-particle correlation method, as expected for long-range collective behavior. Finally, the measured values of v2{4} and v2{2} are used to estimate the number of sources relevant for the initial eccentricity in the collision geometry. The results based on the subevent cumulant technique provide direct evidence, in small collision systems, for a long-range collectivity involving many particles distributed across a broad rapidity interval.

U2 - 10.1103/PhysRevC.97.024904

DO - 10.1103/PhysRevC.97.024904

M3 - Journal article

VL - 97

JO - Physical Review C

JF - Physical Review C

SN - 0556-2813

IS - 2

M1 - 024904

ER -