Home > Research > Publications & Outputs > Measurement of the tt¯ production cross-section...

Links

Text available via DOI:

View graph of relations

Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector. / The ATLAS collaboration.
In: Physics Letters B, Vol. 761, 10.10.2016, p. 136-157.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

The ATLAS collaboration. Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector. Physics Letters B. 2016 Oct 10;761:136-157. doi: 10.1016/j.physletb.2016.08.019

Author

Bibtex

@article{96d2614c16a042c2a0ddb56c13d80dbe,
title = "Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector",
abstract = "This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented.",
author = "Barton, {Adam Edward} and Michael Beattie and Bertram, {Iain Alexander} and Guennadi Borissov and Bouhova-Thacker, {Evelina Vassileva} and Sue Cheatham and William Dearnaley and Harald Fox and Grimm, {Kathryn Ann Tschann} and Henderson, {Robert Charles William} and Gareth Hughes and Jones, {Roger William Lewis} and Vakhtang Kartvelishvili and Long, {Robin Eamonn} and Love, {Peter Allan} and Muenstermann, {Daniel Matthias Alfred} and Parker, {Adam Jackson} and Malcolm Skinner and Maria Smizanska and Walder, {James William} and Andy Wharton and {The ATLAS collaboration}",
year = "2016",
month = oct,
day = "10",
doi = "10.1016/j.physletb.2016.08.019",
language = "English",
volume = "761",
pages = "136--157",
journal = "Physics Letters B",
issn = "0370-2693",
publisher = "ELSEVIER SCIENCE BV",

}

RIS

TY - JOUR

T1 - Measurement of the tt¯ production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

AU - Barton, Adam Edward

AU - Beattie, Michael

AU - Bertram, Iain Alexander

AU - Borissov, Guennadi

AU - Bouhova-Thacker, Evelina Vassileva

AU - Cheatham, Sue

AU - Dearnaley, William

AU - Fox, Harald

AU - Grimm, Kathryn Ann Tschann

AU - Henderson, Robert Charles William

AU - Hughes, Gareth

AU - Jones, Roger William Lewis

AU - Kartvelishvili, Vakhtang

AU - Long, Robin Eamonn

AU - Love, Peter Allan

AU - Muenstermann, Daniel Matthias Alfred

AU - Parker, Adam Jackson

AU - Skinner, Malcolm

AU - Smizanska, Maria

AU - Walder, James William

AU - Wharton, Andy

AU - The ATLAS collaboration

PY - 2016/10/10

Y1 - 2016/10/10

N2 - This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented.

AB - This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented.

U2 - 10.1016/j.physletb.2016.08.019

DO - 10.1016/j.physletb.2016.08.019

M3 - Journal article

VL - 761

SP - 136

EP - 157

JO - Physics Letters B

JF - Physics Letters B

SN - 0370-2693

ER -