12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Methods of determining the rheological properti...
View graph of relations

« Back

Methods of determining the rheological properties of magmas at sub-liquidus temperatures.

Research output: Contribution to journalJournal article

Published

Journal publication date11/1992
JournalJournal of Volcanology and Geothermal Research
Journal number1-4
Volume53
Number of pages20
Pages47-66
Original languageEnglish

Abstract

Non-vesicular basaltic melts behave as Newtonian fluids at temperatures above their liquidus and their viscosities can be calculated using a method developed by Shaw (1972) and Bottinga and Weill (1972). Because many igneous processes involve the flow of silicates at sub-liquidus temperatures, numerous attempts have been made to calculate the interactive effects of the crystal phase. However, current methods are appropriate only for relatively low crystal concentrations, and they assume Newtonian behaviour; we argue that this assumption is invalid when bubble or crystal concentrations exceed 30%. At higher concentrations, factors other than concentration become increasingly important; these include particle shape and size distribution. A method which takes these factors into account is tested on a range of suspensions, including magmas at sub-liquidus temperatures, and rheological properties calculated using this method agree closely with the measured values. We also demonstrate that an equation which was introduced to explain large differences in measured apparent viscosities during the cooling and crystallisation of Mount St. Helens dacite (Murase et al., 1985), and which is currently used to calculate the rheological properties of crystallising lavas, generates viscosities which may be in error by several orders of magnitude. This difference is argued to be caused by a combination of factors, including the ten orders of magnitude range in the strain rates utilised during the Mount St. Helens measurements causing orders of magnitude difference in the resulting apparent viscosities. Rheological data on crystallising silicic melts are reinterpreted taking into account the non-Newtonian rheology of the magmas and changes in activation energy of flow during crystallisation.