12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Monotone policies and indexability for bi-direc...
View graph of relations

« Back

Monotone policies and indexability for bi-directional restless bandits

Research output: Contribution to journalJournal article

Published

Journal publication date03/2013
JournalAdvances in Applied Probability
Journal number1
Volume45
Number of pages45
Pages51-85
Original languageEnglish

Abstract

Motivated by a wide range of applications, we consider a development of Whittle's restless bandit model in which project activation requires a state-dependent amount of a key resource, which is assumed to be available at a constant rate. As many projects may be activated at each decision epoch as resource availability allows. We seek a policy for project activation within resource constraints which minimises an aggregate cost rate for the system. Project indices derived from a Lagrangian relaxation of the original problem exist provided the structural requirement of indexability is met. Verification of this property and derivation of the related indices is greatly simplified when the solution of the Lagrangian relaxation has a state monotone structure for each constituent project. We demonstrate that this is indeed the case for a wide range of bidirectional projects in which the project state tends to move in a different direction when it is activated from that in which it moves when passive. This is natural in many application domains in which activation of a project ameliorates its condition, which otherwise tends to deteriorate or deplete. In some cases the state monotonicity required is related to the structure of state transitions, while in others it is also related to the nature of costs. Two numerical studies demonstrate the value of the ideas for the construction of policies for dynamic resource allocation, most especially in contexts which involve a large number of projects.