Home > Research > Publications & Outputs > Neuroprotective effects of lixisenatide and lir...

Electronic data

  • manuscript_Neuroscience

    Rights statement: This is the author’s version of a work that was accepted for publication in Neuroscience. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neuroscience, 303, 2015 DOI: 10.1016/j.neuroscience.2015.06.054

    Accepted author manuscript, 343 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>10/09/2015
<mark>Journal</mark>Neuroscience
Volume303
Number of pages9
Pages (from-to)42-50
Publication StatusPublished
Early online date2/07/15
<mark>Original language</mark>English

Abstract

Glucagon-like peptide 1 (GLP-1) is a growth factor. GLP-1 mimetics are on the market as treatments for type 2 diabetes and are well tolerated. These drugs have shown neuroprotective properties in animal models of neurodegenerative disorders. In addition, the GLP-1 mimetic exendin-4 has shown protective effects in animal models of Parkinson's disease (PD), and a clinical trial in PD patients showed promising first results. Liraglutide and lixisenatide are two newer GLP-1 mimetics which have a longer biological half-life than exendin-4. We previously showed that these drugs have neuroprotective properties in an animal model of Alzheimer's disease. Here we demonstrate the neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP was injected once-daily (20mg/kg i.p.) for 7days, and drugs were injected once-daily for 14days i.p. When comparing exendin-4 (10nmol/kg), liraglutide (25nmol/kg) and lixisenatide (10nmol/kg), it was found that exendin-4 showed no protective effects at the dose chosen. Both liraglutide and lixisenatide showed effects in preventing the MPTP-induced motor impairment (Rotarod, open-field locomotion, catalepsy test), reduction in tyrosine hydroxylase (TH) levels (dopamine synthesis) in the substantia nigra and basal ganglia, a reduction of the pro-apoptotic signaling molecule BAX and an increase in the anti-apoptotic signaling molecule B-cell lymphoma-2. The results demonstrate that in this study, both liraglutide and lixisenatide are superior to exendin-4, and both drugs show promise as a novel treatment of PD.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Neuroscience. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neuroscience, 303, 2015 DOI: 10.1016/j.neuroscience.2015.06.054