Home > Research > Publications & Outputs > On Linear Algebraic Representation of Time-span...

Electronic data

  • 17cmmr01Jul

    Accepted author manuscript, 428 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

View graph of relations

On Linear Algebraic Representation of Time-span and Prolongational Trees

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paper

Published
Close
NullPointerException

Abstract

In constructive music theory, such as Schenkerian analysis and the Generative Theory of Tonal Music (GTTM), the hierarchical importance of pitch events is conveniently represented by a tree structure. Although a tree is intuitive and visible, such a graphic representation cannot be treated in mathematical formalization. Especially in the GTTM, the conjunction height of two branches is often arbitrary, contrary to the notion of hierarchy. As even a tree is a kind of graph, and a graph is often represented by a matrix, we show the linear algebraic representation of a tree, specifying the conjunction heights. Thereafter, we explain the ‘reachability’ between pitch events (corresponding to information about reduction) by the multiplication of matrices. In addition we discuss multiplication with vectors representing a sequence of harmonic functions, and suggest the notion of stability. Finally, we discuss operations between matrices with the objective of modelling compositional processes with simple algebraic operations.