We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Oxygen isotope analysis of diatom silica and au...
View graph of relations

« Back

Oxygen isotope analysis of diatom silica and authigenic calcite from Lake Pinarbasi, Turkey

Research output: Contribution to journalJournal article


  • M. Leng
  • P. Barker
  • P. Greenwood
  • N. Roberts
  • J. Reed
Journal publication date04/2001
JournalJournal of Paleolimnology
Number of pages7
Original languageEnglish


There is increasing interest in the 18O/16O ratio of diatom silica, particularly for lakes where carbonates are absent. Here we compare the 18O/16O ratios preserved in diatom silica and authigenic calcite from an open, spring-fed, freshwater lake core from Turkey which spans marine oxygen isotope stage 3. The two sets of isotope data show contrasting trends in spite of their mutual dependence on the water 18O/16O ratio and lake-water temperature. The most likely explanation for this divergence is difference in seasonality of biological productivity mediated by the strongly continental climate of the Anatolian plateau. Diatom silica and authigenic calcite are precipitated from solutes in the lake-water at different times of the year. Diatom productivity follows a well-defined seasonal cycle, peaking first and most importantly in the spring and then in the autumn. The precipitation of calcite follows productivity by all forms of photosynthetic organisms that deplete CO2 but in most lakes this occurs during the summer months. The 18Ocalcite curve shows mean summer temperature maxima at ca. 30–35 and ca. 58 ka BP while the intervening data represent a period of relatively cool summers. The 18Odiatom curve shows bipolar results (15–20 and 29–33), which suggests that at least two discrete sources or processes contributed to the oxygen composition of the diatoms but probably involved a dilution mechanism to shift the isotopic values. The most likely source of depleted water is from snow entering the lake during the spring thaw. We infer that many authigenic calcite curves from regions with markedly seasonal climates may be temporally limited to a few summer months and that diatom silica provides complementary data on seasonally-specific water isotopic composition rather than a substitute for analyses based on carbonate.

Bibliographic note

Apr Oxygen isotope analysis of diatom silica and authigenic calcite from Lake Pinarbasi, Turkey Times Cited: 29