Home > Research > Publications & Outputs > Parasite community dynamics in an invasive vole

Links

Text available via DOI:

View graph of relations

Parasite community dynamics in an invasive vole: from focal introduction to wave front

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>12/2017
<mark>Journal</mark>International Journal for Parasitology: Parasites and Wildlife
Issue number3
Volume6
Number of pages8
Pages (from-to)412-419
Publication StatusPublished
Early online date4/08/17
<mark>Original language</mark>English

Abstract

Multiple parasite species simultaneously infecting a host can interact with one another, which has the potential to influence host-parasite interactions. Invasive species typically lose members of their parasite community during the invasion process. Not only do the founding population escape their parasites, but the rapid range expansion of invaders once in the invaded range can lead to additional stochastic loss of parasites. As such, parasite community dynamics may change along an invasion gradient, with consequences for host invasion success. Here, we use the bank vole, Myodes glareolus, introduced as a small founding population at a point source in the Republic of Ireland in c.1920's and its ecto- and endoparasites to ask: i) how does the parasite community vary across an invasion gradient, and ii) are parasite community associations driven by host traits and/or distance from the point of host introduction? We sampled the parasite community of M. glareolus at the proposed focal site of introduction, at mid-wave and the invasion front, and used a parasite interactivity index and statistical models to determine the potential for the parasite community to interact. Bank voles harboured up to six different parasite taxa, with a significantly higher parasite interactivity index at the foci of introduction (z = 2.33, p = 0.02) than elsewhere, suggesting the most established parasite community has greater opportunities to interact. All but one of four synergistic parasite community associations were driven by host traits; sex and body mass. The remaining parasite-parasite associations occurred at the mid-point of the invasion wave, suggesting that specific parasite-parasite interactions are not mediated by distance from a focal point of host introduction. We propose that host traits rather than location along an invasion gradient are more likely to determine parasite-parasite interactions in the invasive bank vole.