Home > Research > Publications & Outputs > Performance analysis of turbo codes in quasi-st...

Electronic data

  • Iet published

    Final published version, 779 KB, PDF-document

    Available under license: None

Links

Text available via DOI:

View graph of relations

Performance analysis of turbo codes in quasi-static fading channels

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>03/2008
<mark>Journal</mark>IET Communications
Issue number3
Volume2
Number of pages13
Pages (from-to)449-461
Publication statusPublished
Original languageEnglish

Abstract

The performance of turbo codes in quasi- static fading channels both with and without antenna diversity is investigated. In particular, simple analytic techniques that relate the frame error rate of a turbo code to both its average distance spectrum as well as the iterative decoder convergence characteristics are developed. Both by analysis and simulation, the impact of the constituent recursive systematic convolutional ( RSC) codes, the interleaver size and the number of decoding iterations on the performance of turbo codes are also investigated. In particular, it is shown that in systems with limited antenna diversity different constituent RSC codes or interleaver sizes do not affect the performance of turbo codes. In contrast, in systems with significant antenna diversity, particular constituent RSC codes and interleaver sizes have the potential to significantly enhance the performance of turbo codes. These results are attributed to the fact that in single transmit - single receive antenna systems, the performance primarily depends on the decoder convergence characteristics for E-b/N-o values of practical interest. However, in multiple transmit - multiple receive antenna systems, the performance depends on the code characteristics.