12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Physical modelling and advanced simulations of ...
View graph of relations

« Back

Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays

Research output: Contribution to journalScientific review

Published

  • Xi Jiang
  • G. A. Siamas
  • K. Jagus
  • T. G. Karayiannis

Associated organisational unit

Journal publication date04/2010
JournalProgress in Energy and Combustion Science
Journal number2
Volume36
Number of pages37
Pages131-167
Original languageEnglish

Abstract

This review attempts to summarize the physical models and advanced methods used in computational studies of gas-liquid two-phase jet flows encountered in atomization and spray processes. In traditional computational fluid dynamics (CFD) based on Reynolds-averaged Navier-Stokes (RANS) approach, physical modelling of atomization and sprays is an essential part of the two-phase flow Computation. In more advanced CFD such as direct numerical simulation (DNS) and large-eddy simulation (LES), physical modelling of atomization and sprays is still inevitable. For multiphase flows, there is no model-free DNS since the interactions between different phases need to be modelled. DNS of multiphase flows based on the one-fluid formalism coupled with interface tracking algorithms seems to be a promising way forward, due to the advantageous lower costs compared with a multi-fluid approach. In LES of gas-liquid two-phase jet flows, subgrid-scale (SGS) models for complex multiphase flows are very immature. There is a lack of well-established SGS models to account for the interactions between the different phases. In this paper, physical modelling of atomization and sprays in the context of CFD is reviewed with modelling assumptions and limitations discussed. In addition, numerical methods used in advanced CFD of atomization and sprays are discussed, including high-order numerical schemes. Other relevant issues of modelling and simulation of atomization and sprays such as nozzle internal flow, dense spray, and multiscale modelling are also briefly reviewed. (C) 2009 Elsevier Ltd. All rights reserved.