Home > Research > Publications & Outputs > Pitch plane analysis of a twin-gas-chamber stru...

Associated organisational unit

View graph of relations

Pitch plane analysis of a twin-gas-chamber strut suspension

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Pitch plane analysis of a twin-gas-chamber strut suspension. / Cao, D.; Rakheja, S.; Su, C-Y.
In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 222, No. 8, 08.2008, p. 1313-1335.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Cao, D, Rakheja, S & Su, C-Y 2008, 'Pitch plane analysis of a twin-gas-chamber strut suspension', Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 222, no. 8, pp. 1313-1335. https://doi.org/10.1243/09544070JAUTO779

APA

Cao, D., Rakheja, S., & Su, C-Y. (2008). Pitch plane analysis of a twin-gas-chamber strut suspension. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 222(8), 1313-1335. https://doi.org/10.1243/09544070JAUTO779

Vancouver

Cao D, Rakheja S, Su C-Y. Pitch plane analysis of a twin-gas-chamber strut suspension. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2008 Aug;222(8):1313-1335. doi: 10.1243/09544070JAUTO779

Author

Cao, D. ; Rakheja, S. ; Su, C-Y. / Pitch plane analysis of a twin-gas-chamber strut suspension. In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2008 ; Vol. 222, No. 8. pp. 1313-1335.

Bibtex

@article{ef06c805851b4defa87f1459bd7c34f9,
title = "Pitch plane analysis of a twin-gas-chamber strut suspension",
abstract = "A twin-gas-chamber hydropneumatic suspension strut concept is proposed to achieve enhanced bounce and pitch ride, and pitch attitude control. The response characteristics of the twin-gas-chamber strut suspension are compared with those of a single-gas-chamber strut Suspension to demonstrate not Only Superior performance potentials but also the added design flexibility offered by the twin- gas- chamber struts. The relative responses of both strut suspensions are evaluated through analysis of a pitch plane vehicle model, subject to straight-line braking inputs and excitations arising from randomly distributed road elevations. A generalized formulation for the strut forces is presented to derive the bounce and pitch rates of the proposed strut Suspensions. The results reveal that the twin-gas-chamber strut Suspension exhibits a slightly lower pitch stiffness in the vicinity of design ride height, but progressively hardening effects with increasing pitch deflections. Moreover, the twin-gas-chamber strut suspension exhibits considerably fewer hardening-softening effects in suspension rate compared with the suspension involving the single-gas-chamber struts. The results attained from the parametric Studies are also discussed to demonstrate superior design flexibility of the twin-gas-chamber struts for timing of the suspension bounce and pitch stiffness properties. The dynamic responses of the vehicle model with different Suspensions are assessed subject to random road roughness excitations as well as braking torque inputs. The results demonstrate that the twin- gas-chamber strut Suspension offers considerable potential for enhancing bounce and pitch ride, pitch attitude control, and Suspension travel responses under braking, while the influence on the ride and road-holding responses under random road inputs is insignificant. The results also suggest that a relatively soft front Suspension design Could provide further enhancement of pitch ride and pitch deflection responses under random road roughness excitations.",
keywords = "twin-gas-chamber strut, pitch stiffness, suspension rate, design flexibility, front and rear stiffness tuning, pitch ride, pitch attitude control, VIBRATION, DYNAMICS, ROLL",
author = "D. Cao and S. Rakheja and C-Y Su",
year = "2008",
month = aug,
doi = "10.1243/09544070JAUTO779",
language = "English",
volume = "222",
pages = "1313--1335",
journal = "Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering",
issn = "0954-4070",
publisher = "SAGE Publications Inc.",
number = "8",

}

RIS

TY - JOUR

T1 - Pitch plane analysis of a twin-gas-chamber strut suspension

AU - Cao, D.

AU - Rakheja, S.

AU - Su, C-Y

PY - 2008/8

Y1 - 2008/8

N2 - A twin-gas-chamber hydropneumatic suspension strut concept is proposed to achieve enhanced bounce and pitch ride, and pitch attitude control. The response characteristics of the twin-gas-chamber strut suspension are compared with those of a single-gas-chamber strut Suspension to demonstrate not Only Superior performance potentials but also the added design flexibility offered by the twin- gas- chamber struts. The relative responses of both strut suspensions are evaluated through analysis of a pitch plane vehicle model, subject to straight-line braking inputs and excitations arising from randomly distributed road elevations. A generalized formulation for the strut forces is presented to derive the bounce and pitch rates of the proposed strut Suspensions. The results reveal that the twin-gas-chamber strut Suspension exhibits a slightly lower pitch stiffness in the vicinity of design ride height, but progressively hardening effects with increasing pitch deflections. Moreover, the twin-gas-chamber strut suspension exhibits considerably fewer hardening-softening effects in suspension rate compared with the suspension involving the single-gas-chamber struts. The results attained from the parametric Studies are also discussed to demonstrate superior design flexibility of the twin-gas-chamber struts for timing of the suspension bounce and pitch stiffness properties. The dynamic responses of the vehicle model with different Suspensions are assessed subject to random road roughness excitations as well as braking torque inputs. The results demonstrate that the twin- gas-chamber strut Suspension offers considerable potential for enhancing bounce and pitch ride, pitch attitude control, and Suspension travel responses under braking, while the influence on the ride and road-holding responses under random road inputs is insignificant. The results also suggest that a relatively soft front Suspension design Could provide further enhancement of pitch ride and pitch deflection responses under random road roughness excitations.

AB - A twin-gas-chamber hydropneumatic suspension strut concept is proposed to achieve enhanced bounce and pitch ride, and pitch attitude control. The response characteristics of the twin-gas-chamber strut suspension are compared with those of a single-gas-chamber strut Suspension to demonstrate not Only Superior performance potentials but also the added design flexibility offered by the twin- gas- chamber struts. The relative responses of both strut suspensions are evaluated through analysis of a pitch plane vehicle model, subject to straight-line braking inputs and excitations arising from randomly distributed road elevations. A generalized formulation for the strut forces is presented to derive the bounce and pitch rates of the proposed strut Suspensions. The results reveal that the twin-gas-chamber strut Suspension exhibits a slightly lower pitch stiffness in the vicinity of design ride height, but progressively hardening effects with increasing pitch deflections. Moreover, the twin-gas-chamber strut suspension exhibits considerably fewer hardening-softening effects in suspension rate compared with the suspension involving the single-gas-chamber struts. The results attained from the parametric Studies are also discussed to demonstrate superior design flexibility of the twin-gas-chamber struts for timing of the suspension bounce and pitch stiffness properties. The dynamic responses of the vehicle model with different Suspensions are assessed subject to random road roughness excitations as well as braking torque inputs. The results demonstrate that the twin- gas-chamber strut Suspension offers considerable potential for enhancing bounce and pitch ride, pitch attitude control, and Suspension travel responses under braking, while the influence on the ride and road-holding responses under random road inputs is insignificant. The results also suggest that a relatively soft front Suspension design Could provide further enhancement of pitch ride and pitch deflection responses under random road roughness excitations.

KW - twin-gas-chamber strut

KW - pitch stiffness

KW - suspension rate

KW - design flexibility

KW - front and rear stiffness tuning

KW - pitch ride

KW - pitch attitude control

KW - VIBRATION

KW - DYNAMICS

KW - ROLL

U2 - 10.1243/09544070JAUTO779

DO - 10.1243/09544070JAUTO779

M3 - Journal article

VL - 222

SP - 1313

EP - 1335

JO - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering

JF - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering

SN - 0954-4070

IS - 8

ER -