12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Prediction of polycyclic aromatic hydrocarbon b...
View graph of relations

« Back

Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique.

Research output: Contribution to journalJournal article

Published

Journal publication date06/2005
JournalEnvironmental Toxicology and Chemistry
Journal number6
Volume24
Number of pages6
Pages1325-1330
Original languageEnglish

Abstract

This study investigated the use of an aqueous hydroxypropyl-p-cyclodextrin (HPCD) shake extraction to predict the degree of microbial degradation of polycyclic aromatic hydrocarbons (PAHs) in soils. Three different aged PAH-contaminated soils were studied: A soil from a former coke works (CW) and two artificially contaminated soils (ACI and AC2). First, the catabolic activity of the indigenous soil microflora was assessed with C-14-respirometry, using a range of C-14- labeled aromatic compounds. Extensive mineralization of several compounds occurred in the CW and the AC2 soils, suggesting that both soils contained catabolically active microorganisms. No significant mineralization occurred in the ACI soil, implying that either it did not contain an indigenous PAH-degrading microbial population or that degradation, but not mineralization, occurred. The soils then were subjected to three sets of analyses: dichloromethane (DCM) soxhlet extraction, six-week biodegradation assay followed by DCM extraction, and extraction with HPCD followed by DCM extraction. A general decrease in PAHs present in the soils occurred after the biodegradation assay. In the CW and the AC1 soils, strong correlations were observed between the amount of PAHs biodegraded and the fraction of PAHs removed from the soils using the HPCD extraction. However, the AC2 soil showed a more modest correlation between the biodegradable fraction and the HPCD extractable fraction, with the HPCD extraction slightly underestimating the extent of PAH biodegradation. The results of this study indicated that an aqueous HPCD extraction may be a useful tool in assessing the microbial availability of aged contaminant mixtures in soils, although further validation is required.