12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Preliminary study of laser doppler perfusion si...
View graph of relations

« Back

Preliminary study of laser doppler perfusion signal by wavelet transform in patients with critical limb ischemia before and after revascularization

Research output: Contribution to journalJournal article

Published

Journal publication date2014
JournalClinical Hemorheology and Microcirculation
Early online date29/10/13
Original languageEnglish

Abstract

The haemodynamics of skin microcirculation can be quantitatively evaluated by Laser Doppler Fluxmetry (LDF). LDF signal in human skin shows periodic oscillations. Spectral analysis by wavelet transform displays six characteristic frequency intervals (FI) from 0.005 to 2 Hz, related to distinct vascular structures activities: heart (0.6-2 Hz), sympathetic respiratory (0.145-0.6 Hz), myogenic (0.052-0.145 Hz), local sympathetic nerve (0.021-0.052 Hz) and endothelial cells NO dependent (0.0095-0.021 Hz) and NO independent (0.005-0.0095 Hz). The most advanced stage of peripheral arterial obstructive disease is the critical limb ischemia (CLI), which causes the reduction of blood perfusion threatening limb viability. Besides macrocirculatory alterations, many studies have shown microvascular misdistribution of skin blood flow as the main factor that leads patients to CLI. Revascularization can save limb and patient's life, too. In the present study, LDF signals have been recorded on the skin of the foot dorsum in 15 patients suffering from CLI. LDF signals have been analyzed before and after limb revascularization by means of the wavelet analysis. Significant changes in frequency distribution before and after limb revascularization have been detected: the median normalized values of spectral power increases for 49.8% (p = 0.0341) in the frequency range 0.050328-0.053707 Hz, whereas spectral power decreases for 77.1% (p = 0.0179) in the frequency range 0.018988-0.029284 Hz. We can conclude that changes in the frequency intervals occur after revascularization, shifting from a prevailing endothelial activity toward a prevailing sympathetic activity.