12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Pressure-flow relationships, xylem solutes and ...
View graph of relations

« Back

Pressure-flow relationships, xylem solutes and hydraulic conductivity in roots of flooded tomato plants.

Research output: Contribution to journalJournal article

Published

Journal publication date01/1996
JournalAnnals of Botany
Journal number1
Volume77
Number of pages8
Pages17-24
Original languageEnglish

Abstract

Roots of month-old tomato plants (Lycopersicon esculentumMill.) were flooded for up to 36h. Shoots were removed just below the cotyledonary node, and the roots subjected to external pneumatic pressures ( ΔP=0.02 – 0.4MPa). Rates of resulting sap flow (Jv) from the hypocotyl stump were measured and solute content assessed. Increasing ΔPraisedJvand diluted sap osmolites. Dilution was proportional to flow in well-drained plants but less than proportional in flooded plants. Sap flow increased linearly over a ΔPrange of 0.2 –0.4MPa; the slope of this line representing hydraulic conductance (LP), an estimate of inherent root hydraulic conductivity. Flooding for 24h did not changeLPrelative to well-drained controls. Despite this similarLP,Jvat given values of ΔPwere always faster through flooded root systems. This is explained by greater osmolality of xylem sap and thus more negative osmotic potentials ( πsap) creating an additional driving force promotingJv. Overall, solute osmolality and solute delivery in flowing xylem sap increased as flooding was prolonged from 6 to 36h flooding. On arrival in the shoot, these solutes would exert a negative effect on leaf water potentials down to -0.08MPa. The extra solutes exported from roots of flooded plants compared with controls, included potassium, sulphate, protein, serine, 1-aminocyclopropane-1-carboxylic acid and sucrose. Flooding decreased the delivery of nitrate, hydrogen ions, most protein amino acids, glutamine, and abscisic acid. These changes in delivery of solutes are systemic messages passing from flooded roots to shoots. Their osmotic and physiological properties may modify shoot growth and development and have adaptive significance.