Home > Research > Publications & Outputs > Pressure-assisted infiltration of molten metals...


Text available via DOI:

View graph of relations

Pressure-assisted infiltration of molten metals into non-rigid, porous carbon fibre structures

Research output: Contribution to journalJournal article

E-pub ahead of print
<mark>Journal publication date</mark>05/2018
<mark>Journal</mark>Journal of Materials Processing Technology
Number of pages10
Pages (from-to)66-75
<mark>State</mark>E-pub ahead of print
Early online date1/12/17
<mark>Original language</mark>English


Abstract Mercury intrusion porosimetry has been conducted on a range of non-rigid, porous carbon fibre structures. Comparison with data from gas pressure infiltration experiments in a molten Al-Si alloy shows it to be a useful tool in determining the pressure required to produce Al metal matrix composites with low levels of porosity. Whilst for non-rigid fibre preforms, as studied here, it is difficult to pin-point every aspect of the infiltration process, the method does give an indication of critical aspects of the infiltration behaviour. Preforms made from loose and spread tow can be fully infiltrated at relatively low pressures (12 bar) and although metal can fill the spaces between fibre bundles within textile-based preforms at low pressures, densely-packed bundles are only infiltrated at higher pressures, usually in excess of 50 bar. Mercury intrusion porosimetry could provide a valuable and simple tool in the design of fibre-reinforced metal matrix composites with optimised structures that are easy to manufacture.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Journal of Materials Processing Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Materials Processing Technology, 255, 2018 DOI: 10.1016/j.jmatprotec.2017.11.059