Home > Research > Publications & Outputs > Pressure-flow relationships, xylem solutes and ...
View graph of relations

Pressure-flow relationships, xylem solutes and hydraulic conductivity in roots of flooded tomato plants.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Pressure-flow relationships, xylem solutes and hydraulic conductivity in roots of flooded tomato plants. / Jackson, Michael B.; Davies, William J.; Else, Mark A.
In: Annals of Botany, Vol. 77, No. 1, 01.1996, p. 17-24.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Jackson MB, Davies WJ, Else MA. Pressure-flow relationships, xylem solutes and hydraulic conductivity in roots of flooded tomato plants. Annals of Botany. 1996 Jan;77(1):17-24. doi: 10.1006/anbo.1996.0003

Author

Jackson, Michael B. ; Davies, William J. ; Else, Mark A. / Pressure-flow relationships, xylem solutes and hydraulic conductivity in roots of flooded tomato plants. In: Annals of Botany. 1996 ; Vol. 77, No. 1. pp. 17-24.

Bibtex

@article{f7759a110fc74d18b91ec967761f1b7d,
title = "Pressure-flow relationships, xylem solutes and hydraulic conductivity in roots of flooded tomato plants.",
abstract = "Roots of month-old tomato plants (Lycopersicon esculentumMill.) were flooded for up to 36h. Shoots were removed just below the cotyledonary node, and the roots subjected to external pneumatic pressures ( ΔP=0.02 – 0.4MPa). Rates of resulting sap flow (Jv) from the hypocotyl stump were measured and solute content assessed. Increasing ΔPraisedJvand diluted sap osmolites. Dilution was proportional to flow in well-drained plants but less than proportional in flooded plants. Sap flow increased linearly over a ΔPrange of 0.2 –0.4MPa; the slope of this line representing hydraulic conductance (LP), an estimate of inherent root hydraulic conductivity. Flooding for 24h did not changeLPrelative to well-drained controls. Despite this similarLP,Jvat given values of ΔPwere always faster through flooded root systems. This is explained by greater osmolality of xylem sap and thus more negative osmotic potentials ( πsap) creating an additional driving force promotingJv. Overall, solute osmolality and solute delivery in flowing xylem sap increased as flooding was prolonged from 6 to 36h flooding. On arrival in the shoot, these solutes would exert a negative effect on leaf water potentials down to -0.08MPa. The extra solutes exported from roots of flooded plants compared with controls, included potassium, sulphate, protein, serine, 1-aminocyclopropane-1-carboxylic acid and sucrose. Flooding decreased the delivery of nitrate, hydrogen ions, most protein amino acids, glutamine, and abscisic acid. These changes in delivery of solutes are systemic messages passing from flooded roots to shoots. Their osmotic and physiological properties may modify shoot growth and development and have adaptive significance.",
keywords = "Lycopersicon esculentumMill, abscisic acid, 1-aminocyclopropane-1-carboxylic acid, hydraulic conductance, root to shoot communication, xylem sap, minerals, stress, transpiration",
author = "Jackson, {Michael B.} and Davies, {William J.} and Else, {Mark A.}",
year = "1996",
month = jan,
doi = "10.1006/anbo.1996.0003",
language = "English",
volume = "77",
pages = "17--24",
journal = "Annals of Botany",
issn = "1095-8290",
publisher = "OXFORD UNIV PRESS",
number = "1",

}

RIS

TY - JOUR

T1 - Pressure-flow relationships, xylem solutes and hydraulic conductivity in roots of flooded tomato plants.

AU - Jackson, Michael B.

AU - Davies, William J.

AU - Else, Mark A.

PY - 1996/1

Y1 - 1996/1

N2 - Roots of month-old tomato plants (Lycopersicon esculentumMill.) were flooded for up to 36h. Shoots were removed just below the cotyledonary node, and the roots subjected to external pneumatic pressures ( ΔP=0.02 – 0.4MPa). Rates of resulting sap flow (Jv) from the hypocotyl stump were measured and solute content assessed. Increasing ΔPraisedJvand diluted sap osmolites. Dilution was proportional to flow in well-drained plants but less than proportional in flooded plants. Sap flow increased linearly over a ΔPrange of 0.2 –0.4MPa; the slope of this line representing hydraulic conductance (LP), an estimate of inherent root hydraulic conductivity. Flooding for 24h did not changeLPrelative to well-drained controls. Despite this similarLP,Jvat given values of ΔPwere always faster through flooded root systems. This is explained by greater osmolality of xylem sap and thus more negative osmotic potentials ( πsap) creating an additional driving force promotingJv. Overall, solute osmolality and solute delivery in flowing xylem sap increased as flooding was prolonged from 6 to 36h flooding. On arrival in the shoot, these solutes would exert a negative effect on leaf water potentials down to -0.08MPa. The extra solutes exported from roots of flooded plants compared with controls, included potassium, sulphate, protein, serine, 1-aminocyclopropane-1-carboxylic acid and sucrose. Flooding decreased the delivery of nitrate, hydrogen ions, most protein amino acids, glutamine, and abscisic acid. These changes in delivery of solutes are systemic messages passing from flooded roots to shoots. Their osmotic and physiological properties may modify shoot growth and development and have adaptive significance.

AB - Roots of month-old tomato plants (Lycopersicon esculentumMill.) were flooded for up to 36h. Shoots were removed just below the cotyledonary node, and the roots subjected to external pneumatic pressures ( ΔP=0.02 – 0.4MPa). Rates of resulting sap flow (Jv) from the hypocotyl stump were measured and solute content assessed. Increasing ΔPraisedJvand diluted sap osmolites. Dilution was proportional to flow in well-drained plants but less than proportional in flooded plants. Sap flow increased linearly over a ΔPrange of 0.2 –0.4MPa; the slope of this line representing hydraulic conductance (LP), an estimate of inherent root hydraulic conductivity. Flooding for 24h did not changeLPrelative to well-drained controls. Despite this similarLP,Jvat given values of ΔPwere always faster through flooded root systems. This is explained by greater osmolality of xylem sap and thus more negative osmotic potentials ( πsap) creating an additional driving force promotingJv. Overall, solute osmolality and solute delivery in flowing xylem sap increased as flooding was prolonged from 6 to 36h flooding. On arrival in the shoot, these solutes would exert a negative effect on leaf water potentials down to -0.08MPa. The extra solutes exported from roots of flooded plants compared with controls, included potassium, sulphate, protein, serine, 1-aminocyclopropane-1-carboxylic acid and sucrose. Flooding decreased the delivery of nitrate, hydrogen ions, most protein amino acids, glutamine, and abscisic acid. These changes in delivery of solutes are systemic messages passing from flooded roots to shoots. Their osmotic and physiological properties may modify shoot growth and development and have adaptive significance.

KW - Lycopersicon esculentumMill

KW - abscisic acid

KW - 1-aminocyclopropane-1-carboxylic acid

KW - hydraulic conductance

KW - root to shoot communication

KW - xylem sap

KW - minerals

KW - stress

KW - transpiration

U2 - 10.1006/anbo.1996.0003

DO - 10.1006/anbo.1996.0003

M3 - Journal article

VL - 77

SP - 17

EP - 24

JO - Annals of Botany

JF - Annals of Botany

SN - 1095-8290

IS - 1

ER -