We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Primal cutting plane algorithms revisited
View graph of relations

« Back

Primal cutting plane algorithms revisited

Research output: Contribution to journalJournal article


Journal publication date08/2002
JournalMathematical Methods of Operational Research
Number of pages15
Original languageEnglish


Dual fractional cutting plane algorithms, in which cutting planes are used to iteratively tighten a linear relaxation of an integer program, are well known and form the basis of the highly successful branch-and-cut method. It is rather less well-known that various primal cutting plane algorithms were developed in the 1960s, for example by Young. In a primal algorithm, the main role of the cutting planes is to enable a feasible solution to the original problem to be improved. Research on these algorithms has been almost non-existent. In this paper we argue for a re-examination of these primal methods. We describe a new primal algorithm for pure 0-1 problems based on strong valid inequalities and give some encouraging computational results. Possible extensions to the case of general mixed-integer programs are also discussed.