Home > Research > Publications & Outputs > Pristine and iron-engineered animal- and plant-...

Electronic data

  • Pan_STOTEN_Fe-biochar

    Rights statement: This is the author’s version of a work that was accepted for publication in Science of the Total Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, 763, 2021 DOI: 10.1016/j.scitotenv.2020.144218

    Accepted author manuscript, 1.03 MB, PDF document

    Embargo ends: 25/12/21

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil

Research output: Contribution to journalJournal articlepeer-review

E-pub ahead of print
  • H. Pan
  • X. Yang
  • H. Chen
  • B. Sarkar
  • N. Bolan
  • S.M. Shaheen
  • F. Wu
  • L. Che
  • Y. Ma
  • J. Rinklebe
  • H. Wang
Close
Article number144218
<mark>Journal publication date</mark>1/04/2021
<mark>Journal</mark>Science of the Total Environment
Volume763
Number of pages9
Publication StatusE-pub ahead of print
Early online date25/12/20
<mark>Original language</mark>English

Abstract

In this study, typical animal- and plant-derived biochars derived from pig carcass (PB) and green waste (GWB), and their iron-engineered products (Fe-PB and Fe-GWB) were added at the dose of 3% (w/w) to an acidic (pH = 5.8) soil, and incubated to test their efficacy in improving soil quality and immobilizing arsenic (As = 141.3 mg kg−1) and lead (Pb = 736.2 mg kg−1). Soil properties, microbial activities, and the geochemical fractions and potential availabilities of As and Pb were determined in the non-treated (control) and biochar-treated soil. Modification of PB (pH = 10.6) and GWB (pH = 9.3) with Fe caused a decrease in their pH to 4.4 and 3.4, respectively. The application of PB and GWB significantly increased soil pH, while Fe-PB and Fe-GWB decreased soil pH, as compared to the control. Application of Fe-GWB and Fe-PB decreased the NH4H2PO4-extractable As by 32.8 and 35.9%, which was more effective than addition of GWB and PB. However, PB and GWB were more effective than Fe-PB and Fe-GWB in Pb immobilization. Compared to the control, the DTPA-extractable Pb decreased by 20.6 and 21.7%, respectively, following PB and GWB application. Both biochars, particularly PB significantly increased the 16S rRNA bacterial gene copy numbers, indicating that biochar amendments enhanced the bacterial abundance, implying an alleviation of As and Pb bio-toxicity to soil bacteria. The results demonstrated that pristine pig carcass and green waste biochars were more effective in immobilizing Pb, while their Fe-engineered biochars were more effective in As immobilization in co-contaminated soils.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Science of the Total Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, 763, 2021 DOI: 10.1016/j.scitotenv.2020.144218