12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Probability hypothesis density filtering for re...
View graph of relations

« Back

Probability hypothesis density filtering for real-time traffic state estimation and prediction

Research output: Contribution to journalJournal article

Published

Journal publication date09/2013
JournalNetwork and Heterogeneous Media. An Applied Mathematics Journal
Journal number3
Volume8
Number of pages18
Pages825-842
Original languageEnglish

Abstract

The probability hypothesis density (PHD) methodology is widely used by the research community for the purposes of multiple object tracking. This problem consists in the recursive state estimation of several targets by using the information coming from an observation process. The purpose of this paper is to investigate the potential of the PHD filters for real-time traffic state estimation. This investigation is based on a Cell Transmission Model (CTM) coupled with the PHD filter. It brings a novel tool to the state estimation problem and allows to estimate the densities in traffic networks in the presence of measurement origin uncertainty, detection uncertainty and noises. In this work, we compare the PHD filter performance with a particle filter (PF), both taking into account the measurement origin uncertainty and show that they can provide high accuracy in a traffic setting and real-time computational costs. The PHD filtering framework opens new research avenues and has the abilities to solve challenging problems of vehicular networks.

Bibliographic note

Special Issue on: Mathematics of Traffic Modelling, Estimation and Control