12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Prospective modelling of 3D hyporheic exchange ...
View graph of relations

« Back

Prospective modelling of 3D hyporheic exchange based on high-resolution topography and stream elevation

Research output: Contribution to journalJournal article

Published

Journal publication date15/02/2014
JournalHydrological Processes
Journal number4
Volume28
Number of pages16
Pages2579-2594
Early online date19/04/13
Original languageEnglish

Abstract

River managers and scientists interested in hyporheic processes need adequate tools for characterizing hyporheic exchange flow (HEF) at local sites where only poor information on subsurface properties are available. This study evaluates a three-dimensional modelling approach, on the basis of detailed surface parameterization and a simplified subsurface structure, for comparison of potential HEF characteristics at three experimental reaches at the channel-unit scale. First, calibration is conducted to determine the best fit-of-heads given the model simplification, then the structure of residuals are used to evaluate the origin of the misfit, and finally, a sensitivity analysis is conducted to identify inter-site differences in HEF. Results show that such an approach can highlight potential magnitude differences in HEF characteristics between reaches. The sensitivity analysis is successful in delineating the small area of exchange that remains under conditions of high groundwater discharge. In this case, however, the calibrated model performs poorly in representing the exchange pattern at the sediment–water interface, thus suggesting that the approach is less adequate for a deterministic simulation of observed heads. The summary statistics are in the range of similar published models, for which the reported indicator is the root mean square error on heads normalized by the head drop over the reach. We recommend, however, that modellers use a more comparable indicator, such as a measure of the residuals normalized by a measure of observed vertical head differences. Overall, when subsurface data are unavailable or sparse, a three-dimensional groundwater model based on high-resolution topographic data combined with a sensitivity analysis appears as a useful tool for a preliminary characterization of HEF. Copyright © 2013 John Wiley & Sons, Ltd.