12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Quasi-Lagrangian investigation into dimethyl su...
View graph of relations

« Back

Quasi-Lagrangian investigation into dimethyl sulfide oxidation in maritime air using a combination of measurements and model.

Research output: Contribution to journalJournal article

Published

  • J. D. James
  • Roy M. Harrison
  • N. H. Savage
  • A. G. Allen
  • J. L. Grenfell
  • B. J. Allan
  • J. M. C. Plane
  • CN Hewitt
  • B. Davison
  • L. Robertson
Journal publication date2000
JournalJournal of Geophysical Research: Atmospheres
Journal numberD21
Volume105
Number of pages14
Pages26379-26392
Original languageEnglish

Abstract

Using a combination of field measurement data and a modified photochemical box model, strong evidence is presented to suggest that the rate of daytime oxidation of dimethyl sulfide (DMS) by OH radicals is insufficient to describe the measured conversion. Quasi-Lagrangian measurements were made at two sites in the eastern Atlantic (Research Vessel and Mace Head Research Station, Ireland) as part of the Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) program. Periods of connected flow between the two sites were identified, air parcel transit times were estimated, and measurements of the main DMS oxidation products (MSA, SO2, and nss-SO4 2−) were compared with model predictions to establish whether the model's chemical mechanism could account for observed changes. The main finding was that during daytime periods with maritime air masses, the model failed to predict a sufficient increase in DMS oxidation products during the estimated transit time. This was despite a tendency to overprediction of the progress of nitrogen chemistry during air mass advection, and independent checks on the model estimates of hydroxyl radical concentrations through measurements. In the light of this, the involvement of halogen species (most probably halogen oxides) or heterogeneous oxidation processes is tentatively suggested as the cause of enhanced daytime DMS oxidation in the marine boundary layer (MBL). Increasing the rate constant for the OH + DMS reaction by a factor of 3.3 (as a crude way of simulating parallel channels of DMS oxidation) permitted model results to reproduce the measurements very much more closely.