Home > Research > Publications & Outputs > Rainfall-runoff modelling of a humid tropical c...
View graph of relations

Rainfall-runoff modelling of a humid tropical catchment – the TOPMODEL approach.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Rainfall-runoff modelling of a humid tropical catchment – the TOPMODEL approach. / Campling, Paul; Gobin, Anne; Beven, Keith J. et al.
In: Hydrological Processes, Vol. 16, No. 2, 15.02.2002, p. 231-254.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Campling, P, Gobin, A, Beven, KJ & Feyen, J 2002, 'Rainfall-runoff modelling of a humid tropical catchment – the TOPMODEL approach.', Hydrological Processes, vol. 16, no. 2, pp. 231-254. https://doi.org/10.1002/hyp.341

APA

Campling, P., Gobin, A., Beven, K. J., & Feyen, J. (2002). Rainfall-runoff modelling of a humid tropical catchment – the TOPMODEL approach. Hydrological Processes, 16(2), 231-254. https://doi.org/10.1002/hyp.341

Vancouver

Campling P, Gobin A, Beven KJ, Feyen J. Rainfall-runoff modelling of a humid tropical catchment – the TOPMODEL approach. Hydrological Processes. 2002 Feb 15;16(2):231-254. doi: 10.1002/hyp.341

Author

Campling, Paul ; Gobin, Anne ; Beven, Keith J. et al. / Rainfall-runoff modelling of a humid tropical catchment – the TOPMODEL approach. In: Hydrological Processes. 2002 ; Vol. 16, No. 2. pp. 231-254.

Bibtex

@article{4ac77e0de3954592b6f13d31af966989,
title = "Rainfall-runoff modelling of a humid tropical catchment – the TOPMODEL approach.",
abstract = "TOPMODEL, a semi-distributed, topographically based hydrological model, was applied to simulate continuously the runoff hydrograph of a medium-sized (379 km2), humid tropical catchment. The objectives were to relate hydrological responses to runoff generation mechanisms operating in the catchment and to estimate the uncertainty associated with runoff prediction. Field observations indicated that water tables were not parallel to the surface topography, particularly at the start of the wet season. A reference topographic index REF was therefore introduced into the TOPMODEL structure to increase the weighting of local storage deficits in upland areas. The model adaptation had the effect of deepening water tables with distance from the river channel. The generalized likelihood uncertainty estimation (GLUE) framework was used to assess the performance of the model with randomly selected parameter sets, and to set simulation confidence limits. The model simulated well the fast subsurface and overland flow events superimposed on the seasonal rise and fall of the baseflow. The top ranked parameter sets achieved modelling efficiencies of 0·943 and 0·849 in 1994 and 1995 respectively. The GLUE analysis showed that the exponential decay parameter m, controlling the baseflow and the local storage deficit, was the most sensitive parameter. There was increased uncertainty in the simulations of storm events during the early and late phases of the season, which was due to a combination of: errors in detecting the rainfall depths for convectional rainfall events; the treatment of rainfall as a catchment areal value; and, the strong seasonality in runoff response in the humid tropics.",
keywords = "rainfall-runoff modelling, TOPMODEL, humid tropical catchment, hydrological response, uncertainty analysis",
author = "Paul Campling and Anne Gobin and Beven, {Keith J.} and Jan Feyen",
year = "2002",
month = feb,
day = "15",
doi = "10.1002/hyp.341",
language = "English",
volume = "16",
pages = "231--254",
journal = "Hydrological Processes",
issn = "0885-6087",
publisher = "John Wiley and Sons Ltd",
number = "2",

}

RIS

TY - JOUR

T1 - Rainfall-runoff modelling of a humid tropical catchment – the TOPMODEL approach.

AU - Campling, Paul

AU - Gobin, Anne

AU - Beven, Keith J.

AU - Feyen, Jan

PY - 2002/2/15

Y1 - 2002/2/15

N2 - TOPMODEL, a semi-distributed, topographically based hydrological model, was applied to simulate continuously the runoff hydrograph of a medium-sized (379 km2), humid tropical catchment. The objectives were to relate hydrological responses to runoff generation mechanisms operating in the catchment and to estimate the uncertainty associated with runoff prediction. Field observations indicated that water tables were not parallel to the surface topography, particularly at the start of the wet season. A reference topographic index REF was therefore introduced into the TOPMODEL structure to increase the weighting of local storage deficits in upland areas. The model adaptation had the effect of deepening water tables with distance from the river channel. The generalized likelihood uncertainty estimation (GLUE) framework was used to assess the performance of the model with randomly selected parameter sets, and to set simulation confidence limits. The model simulated well the fast subsurface and overland flow events superimposed on the seasonal rise and fall of the baseflow. The top ranked parameter sets achieved modelling efficiencies of 0·943 and 0·849 in 1994 and 1995 respectively. The GLUE analysis showed that the exponential decay parameter m, controlling the baseflow and the local storage deficit, was the most sensitive parameter. There was increased uncertainty in the simulations of storm events during the early and late phases of the season, which was due to a combination of: errors in detecting the rainfall depths for convectional rainfall events; the treatment of rainfall as a catchment areal value; and, the strong seasonality in runoff response in the humid tropics.

AB - TOPMODEL, a semi-distributed, topographically based hydrological model, was applied to simulate continuously the runoff hydrograph of a medium-sized (379 km2), humid tropical catchment. The objectives were to relate hydrological responses to runoff generation mechanisms operating in the catchment and to estimate the uncertainty associated with runoff prediction. Field observations indicated that water tables were not parallel to the surface topography, particularly at the start of the wet season. A reference topographic index REF was therefore introduced into the TOPMODEL structure to increase the weighting of local storage deficits in upland areas. The model adaptation had the effect of deepening water tables with distance from the river channel. The generalized likelihood uncertainty estimation (GLUE) framework was used to assess the performance of the model with randomly selected parameter sets, and to set simulation confidence limits. The model simulated well the fast subsurface and overland flow events superimposed on the seasonal rise and fall of the baseflow. The top ranked parameter sets achieved modelling efficiencies of 0·943 and 0·849 in 1994 and 1995 respectively. The GLUE analysis showed that the exponential decay parameter m, controlling the baseflow and the local storage deficit, was the most sensitive parameter. There was increased uncertainty in the simulations of storm events during the early and late phases of the season, which was due to a combination of: errors in detecting the rainfall depths for convectional rainfall events; the treatment of rainfall as a catchment areal value; and, the strong seasonality in runoff response in the humid tropics.

KW - rainfall-runoff modelling

KW - TOPMODEL

KW - humid tropical catchment

KW - hydrological response

KW - uncertainty analysis

U2 - 10.1002/hyp.341

DO - 10.1002/hyp.341

M3 - Journal article

VL - 16

SP - 231

EP - 254

JO - Hydrological Processes

JF - Hydrological Processes

SN - 0885-6087

IS - 2

ER -