Home > Research > Publications & Outputs > Rapid hydrothermal flow synthesis and character...

Links

Text available via DOI:

View graph of relations

Rapid hydrothermal flow synthesis and characterisation of carbonate and silicate-substituted calcium phosphates

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>2013
<mark>Journal</mark>JOURNAL OF BIOMATERIALS APPLICATIONS
Issue number3
Volume28
Number of pages14
Pages (from-to)448-461
Publication statusPublished
Original languageEnglish

Abstract

A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.