Home > Research > Publications & Outputs > Recovering missing values from corrupted spatio...

Links

Text available via DOI:

View graph of relations

Recovering missing values from corrupted spatio-temporal sensory data via robust low-rank tensor completion

Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSNConference contribution/Paper

Published
  • Wenjie Ruan
  • Peipei Xu
  • Quan Z. Sheng
  • Nickolas J.G. Falkner
  • Xue Li
  • Wei Emma Zhang
Close
NullPointerException

Abstract

With the booming of the Internet of Things, tremendous amount of sensors have been installed in different geographic locations, generating massive sensory data with both time-stamps and geo-tags. Such type of data usually have shown complex spatio-temporal correlation and are easily missing in practice due to communication failure or data corruption. In this paper, we aim to tackle the challenge-how to accurately and efficiently recover the missing values for corrupted spatiotemporal sensory data. Specifically, we first formulate such sensor data as a high-dimensional tensor that can naturally preserve sensors’ both geographical and time information, thus we call spatio-temporal Tensor. Then we model the sensor data recovery as a low-rank robust tensor completion problem by exploiting its latent low-rank structure and sparse noise property. To solve this optimization problem, we design a highly efficient optimization method that combines the alternating direction method of multipliers and accelerated proximal gradient to minimize the tensor’s convex surrogate and noise’s ℓ1-norm. In addition to testing our method by a synthetic dataset, we also use passive RFID (radiofrequency identification) sensors to build a real-world sensor-array testbed, which generates overall 115,200 sensor readings for model evaluation. The experimental results demonstrate the accuracy and robustness of our approach.