12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Reduced order emulation of distributed hydrauli...
View graph of relations

« Back

Reduced order emulation of distributed hydraulic models

Research output: Contribution in Book/Report/ProceedingsPaper

Published

Publication date6/07/2009
Host publication15th IFAC Symposium on System Identification, 2009
PublisherIFAC
Number of pages5
Volume15
Edition1
ISBN (Electronic)978-3-902661-47-0
Original languageEnglish

Abstract

Water level predictions made with hydraulic models are uncertain and evaluating
this uncertainty using Monte Carlo ensemble prediction is computationally very expensive. In this paper we show how a reduced order Dynamic Model Emulator (DME) can be used to reproduce, with high accuracy, the outputs of a large and complex 1-D hydraulic model (HEC-RAS) at specied cross-sections along the Montford to Buildwas reach of the River Severn in the U.K, together with estimates of uncertainty in the predictions. This emulation model is obtained by the application of Dominant Mode Analysis (DMA), involving the identication and estimation of nonlinear State-Dependent Parameter (SDP) transfer function models, using data generated by dynamic experiments conducted on the HEC-RAS model. The paper shows how this `nominal' DME is able to emulate the distributed hydraulic model for a nominal set of its physically-dened parameters and it presents initial results from a complete DME that emulates the HEC-RAS model over a user-dened region of its parameter space.