12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Relationship between solar wind corotating inte...
View graph of relations

« Back

Relationship between solar wind corotating interaction regions and the phasing and intensity of Saturn kilometric radiation bursts

Research output: Contribution to journalJournal article

Published

Journal publication date19/11/2008
JournalAnnales Geophysicae
Journal number12
Volume26
Number of pages11
Pages3641-3651
Original languageEnglish

Abstract

Voyager spacecraft measurements of Saturn kilometric radiation (SKR) identified two features of these radio emissions: that they pulse at a period close to the planetary rotation period, and that the emitted intensity is correlated with the solar wind dynamic pressure (Desch and Kaiser, 1981; Desch, 1982; Desch and Rucker, 1983). In this study the inter-relation between the intensity and the pulsing of the SKR is analysed using Cassini spacecraft measurements of the interplanetary medium and SKR over the interval encompassing Cassini's approach to Saturn, and the first extended orbit. Cassini Plasma Spectrometer ion data were only available for a subset of the dates of interest, so the interplanetary conditions were studied primarily using the near-continuously available magnetic field data, augmented by the ion moment data when available. Intense SKR bursts were identified when solar wind compressions arrived at Saturn. The intensity of subsequent emissions detected by Cassini during the compression intervals was variable, sometimes remaining intense for several planetary rotations, sometimes dimming and rarely disappearing. The timings of the initial intense SKR peaks were sometimes independent of the long-term pulsing behaviour identified in the SKR data. Overall, however, the pulsing of the SKR peaks during the disturbed intervals was not significantly altered relative to that during non-compression intervals.

Bibliographic note

© European Geosciences Union 2008