Home > Research > Publications & Outputs > Resolving and modeling the effects of Fe and Mn...

Electronic data

Links

Text available via DOI:

View graph of relations

Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behaviour in a seasonally anoxic lake.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behaviour in a seasonally anoxic lake. / Hamilton-Taylor, J.; Smith, E.J.; Davison, W. et al.
In: Geochimica et Cosmochimica Acta, Vol. 69, No. 8, 15.04.2005, p. 1947-1960.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Hamilton-Taylor J, Smith EJ, Davison W, Sugiyama M. Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behaviour in a seasonally anoxic lake. Geochimica et Cosmochimica Acta. 2005 Apr 15;69(8):1947-1960. doi: 10.1016/j.gca.2004.11.006

Author

Hamilton-Taylor, J. ; Smith, E.J. ; Davison, W. et al. / Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behaviour in a seasonally anoxic lake. In: Geochimica et Cosmochimica Acta. 2005 ; Vol. 69, No. 8. pp. 1947-1960.

Bibtex

@article{4fba6196ebcc498d9c9d0c746ed39f99,
title = "Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behaviour in a seasonally anoxic lake.",
abstract = "Vertical profiles of the dissolved and particulate (>0.45 μm) concentrations of Fe, Mn, Co, Ni, Cu, Pb, Al and Ba were determined on two occasions (14 and 22 August 1996) during summer stratification in a seasonally anoxic lake (Esthwaite Water, UK). The results were combined with contemporaneous in-situ measurements of water-column remobilization of the metals from settling particles at the base of the suboxic zone and other ancillary measurements. The combined data were interpreted with the aid of an equilibrium speciation model (WHAM6), incorporating metalhumic interactions and a surface-complexation description of binding to Fe and Mn oxides. The behavior of all the metals was related in different ways to the position of the O2-H2S interface and to Fe and Mn redox cycling. In the region of the O2-H2S interface the behavior of Co and to a lesser degree Ni was dominated by Mn redox cycling. Ba behavior was dominated by the biogenic precipitation and dissolution of barite and to a lesser degree by Mn redox cycling. The behavior of Al was linked to both Mn and Fe redox cycling, although the extent of binding to the oxides and to humic substances was poised with respect to pH. Unlike the other metals, the profiles of Pb and Cu showed little variation above the dissolved sulfide maximum, but modeling indicated that binding of Pb was significant to both Mn and Fe oxides. The featureless nature of the Cu profiles in the upper part of the water column was linked to its overriding association with dissolved humic substances. Below the dissolved sulfide maximum, Co, Ni, Ba, Cu, Pb and Mn were all affected by sulfide precipitation, probably through a common association with FeS. In the case of Co, Ni, Cu and Pb, inverse relationships between the measured dissolved and particulate concentrations were attributed to the coexistence of both filterable and nonfilterable FeS particles and associated mass balance effects. The observed behavior of the metals in relation to the role played by Fe and Mn oxides was generally consistent with WHAM6 predictions. The model predictions highlighted the fact that trace metal speciation in general, and binding to Mn and Fe oxides in particular, can be highly sensitive to the variations in solution conditions found in freshwater systems.",
author = "J. Hamilton-Taylor and E.J. Smith and W. Davison and M. Sugiyama",
note = "The final, definitive version of this article has been published in the Journal, Geochimica Cosmochimica Acta, 69 (8), 2005, {\textcopyright} ELSEVIER.",
year = "2005",
month = apr,
day = "15",
doi = "10.1016/j.gca.2004.11.006",
language = "English",
volume = "69",
pages = "1947--1960",
journal = "Geochimica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "8",

}

RIS

TY - JOUR

T1 - Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behaviour in a seasonally anoxic lake.

AU - Hamilton-Taylor, J.

AU - Smith, E.J.

AU - Davison, W.

AU - Sugiyama, M.

N1 - The final, definitive version of this article has been published in the Journal, Geochimica Cosmochimica Acta, 69 (8), 2005, © ELSEVIER.

PY - 2005/4/15

Y1 - 2005/4/15

N2 - Vertical profiles of the dissolved and particulate (>0.45 μm) concentrations of Fe, Mn, Co, Ni, Cu, Pb, Al and Ba were determined on two occasions (14 and 22 August 1996) during summer stratification in a seasonally anoxic lake (Esthwaite Water, UK). The results were combined with contemporaneous in-situ measurements of water-column remobilization of the metals from settling particles at the base of the suboxic zone and other ancillary measurements. The combined data were interpreted with the aid of an equilibrium speciation model (WHAM6), incorporating metalhumic interactions and a surface-complexation description of binding to Fe and Mn oxides. The behavior of all the metals was related in different ways to the position of the O2-H2S interface and to Fe and Mn redox cycling. In the region of the O2-H2S interface the behavior of Co and to a lesser degree Ni was dominated by Mn redox cycling. Ba behavior was dominated by the biogenic precipitation and dissolution of barite and to a lesser degree by Mn redox cycling. The behavior of Al was linked to both Mn and Fe redox cycling, although the extent of binding to the oxides and to humic substances was poised with respect to pH. Unlike the other metals, the profiles of Pb and Cu showed little variation above the dissolved sulfide maximum, but modeling indicated that binding of Pb was significant to both Mn and Fe oxides. The featureless nature of the Cu profiles in the upper part of the water column was linked to its overriding association with dissolved humic substances. Below the dissolved sulfide maximum, Co, Ni, Ba, Cu, Pb and Mn were all affected by sulfide precipitation, probably through a common association with FeS. In the case of Co, Ni, Cu and Pb, inverse relationships between the measured dissolved and particulate concentrations were attributed to the coexistence of both filterable and nonfilterable FeS particles and associated mass balance effects. The observed behavior of the metals in relation to the role played by Fe and Mn oxides was generally consistent with WHAM6 predictions. The model predictions highlighted the fact that trace metal speciation in general, and binding to Mn and Fe oxides in particular, can be highly sensitive to the variations in solution conditions found in freshwater systems.

AB - Vertical profiles of the dissolved and particulate (>0.45 μm) concentrations of Fe, Mn, Co, Ni, Cu, Pb, Al and Ba were determined on two occasions (14 and 22 August 1996) during summer stratification in a seasonally anoxic lake (Esthwaite Water, UK). The results were combined with contemporaneous in-situ measurements of water-column remobilization of the metals from settling particles at the base of the suboxic zone and other ancillary measurements. The combined data were interpreted with the aid of an equilibrium speciation model (WHAM6), incorporating metalhumic interactions and a surface-complexation description of binding to Fe and Mn oxides. The behavior of all the metals was related in different ways to the position of the O2-H2S interface and to Fe and Mn redox cycling. In the region of the O2-H2S interface the behavior of Co and to a lesser degree Ni was dominated by Mn redox cycling. Ba behavior was dominated by the biogenic precipitation and dissolution of barite and to a lesser degree by Mn redox cycling. The behavior of Al was linked to both Mn and Fe redox cycling, although the extent of binding to the oxides and to humic substances was poised with respect to pH. Unlike the other metals, the profiles of Pb and Cu showed little variation above the dissolved sulfide maximum, but modeling indicated that binding of Pb was significant to both Mn and Fe oxides. The featureless nature of the Cu profiles in the upper part of the water column was linked to its overriding association with dissolved humic substances. Below the dissolved sulfide maximum, Co, Ni, Ba, Cu, Pb and Mn were all affected by sulfide precipitation, probably through a common association with FeS. In the case of Co, Ni, Cu and Pb, inverse relationships between the measured dissolved and particulate concentrations were attributed to the coexistence of both filterable and nonfilterable FeS particles and associated mass balance effects. The observed behavior of the metals in relation to the role played by Fe and Mn oxides was generally consistent with WHAM6 predictions. The model predictions highlighted the fact that trace metal speciation in general, and binding to Mn and Fe oxides in particular, can be highly sensitive to the variations in solution conditions found in freshwater systems.

U2 - 10.1016/j.gca.2004.11.006

DO - 10.1016/j.gca.2004.11.006

M3 - Journal article

VL - 69

SP - 1947

EP - 1960

JO - Geochimica et Cosmochimica Acta

JF - Geochimica et Cosmochimica Acta

SN - 0016-7037

IS - 8

ER -