Home > Research > Publications & Outputs > Search for top squarks in final states with one...

Links

Text available via DOI:

View graph of relations

Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in √s=13 TeV pp collisions with the ATLAS detector

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in √s=13 TeV pp collisions with the ATLAS detector. / The ATLAS collaboration.
In: Physical Review D, Vol. 94, No. 5, 052009, 19.09.2016.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{7112eff8b2dd46ca9aa029f8dfe430e1,
title = "Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in √s=13 TeV pp collisions with the ATLAS detector",
abstract = "The results of a search for the top squark, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC pp collision data at a center-of-mass energy of √s=13  TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2  fb−1. The analysis targets two types of signal models: gluino-mediated pair production of top squarks with a nearly mass-degenerate top squark and neutralino and direct pair production of top squarks, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and top squark masses are set at 95% confidence level. The results extend the LHC run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low top squark mass region and add an excluded top squark mass region from 745 to 780 GeV for the direct top squark model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vectorlike top quarks.",
author = "Barton, {Adam Edward} and Michael Beattie and Bertram, {Iain Alexander} and Guennadi Borissov and Bouhova-Thacker, {Evelina Vassileva} and Sue Cheatham and William Dearnaley and Harald Fox and Grimm, {Kathryn Ann Tschann} and Henderson, {Robert Charles William} and Gareth Hughes and Jones, {Roger William Lewis} and Vakhtang Kartvelishvili and Long, {Robin Eamonn} and Love, {Peter Allan} and Muenstermann, {Daniel Matthias Alfred} and Parker, {Adam Jackson} and Malcolm Skinner and Maria Smizanska and Walder, {James William} and Andy Wharton and {The ATLAS collaboration}",
year = "2016",
month = sep,
day = "19",
doi = "10.1103/PhysRevD.94.052009",
language = "English",
volume = "94",
journal = "Physical Review D",
issn = "1550-7998",
publisher = "American Physical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in √s=13 TeV pp collisions with the ATLAS detector

AU - Barton, Adam Edward

AU - Beattie, Michael

AU - Bertram, Iain Alexander

AU - Borissov, Guennadi

AU - Bouhova-Thacker, Evelina Vassileva

AU - Cheatham, Sue

AU - Dearnaley, William

AU - Fox, Harald

AU - Grimm, Kathryn Ann Tschann

AU - Henderson, Robert Charles William

AU - Hughes, Gareth

AU - Jones, Roger William Lewis

AU - Kartvelishvili, Vakhtang

AU - Long, Robin Eamonn

AU - Love, Peter Allan

AU - Muenstermann, Daniel Matthias Alfred

AU - Parker, Adam Jackson

AU - Skinner, Malcolm

AU - Smizanska, Maria

AU - Walder, James William

AU - Wharton, Andy

AU - The ATLAS collaboration

PY - 2016/9/19

Y1 - 2016/9/19

N2 - The results of a search for the top squark, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC pp collision data at a center-of-mass energy of √s=13  TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2  fb−1. The analysis targets two types of signal models: gluino-mediated pair production of top squarks with a nearly mass-degenerate top squark and neutralino and direct pair production of top squarks, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and top squark masses are set at 95% confidence level. The results extend the LHC run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low top squark mass region and add an excluded top squark mass region from 745 to 780 GeV for the direct top squark model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vectorlike top quarks.

AB - The results of a search for the top squark, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC pp collision data at a center-of-mass energy of √s=13  TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2  fb−1. The analysis targets two types of signal models: gluino-mediated pair production of top squarks with a nearly mass-degenerate top squark and neutralino and direct pair production of top squarks, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and top squark masses are set at 95% confidence level. The results extend the LHC run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low top squark mass region and add an excluded top squark mass region from 745 to 780 GeV for the direct top squark model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vectorlike top quarks.

U2 - 10.1103/PhysRevD.94.052009

DO - 10.1103/PhysRevD.94.052009

M3 - Journal article

VL - 94

JO - Physical Review D

JF - Physical Review D

SN - 1550-7998

IS - 5

M1 - 052009

ER -