Rights statement: This is the author’s version of a work that was accepted for publication in Science of the Total Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, 649, 2019 DOI: 10.1016/j.scitotenv.2018.07.414
Accepted author manuscript, 2.69 MB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Seasonal variation of atmospheric organochlorine pesticides and polybrominated diphenyl ethers in Parangipettai, Tamil Nadu, India
T2 - Implication for atmospheric transport
AU - Chakraborty, Paromita
AU - Zhang, Gan
AU - Li, Jun
AU - Sampathkumar, P.
AU - Balasubramanian, Thangavel
AU - Kathiresan, Kandasamy
AU - Takahashi, Shin
AU - Subramanian, Annamalai
AU - Tanabe, Shinsuke
AU - Jones, Kevin C.
N1 - This is the author’s version of a work that was accepted for publication in Science of the Total Environment. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Science of the Total Environment, 649, 2019 DOI: 10.1016/j.scitotenv.2018.07.414
PY - 2019/2/1
Y1 - 2019/2/1
N2 - During 1990s, residues of several persistent organic pollutants (POPs) in different environmental matrices have been reported from a tropical coastal site, Parangipettai (PI), located along the bank of the Vellar River in Tamil Nadu. Hence to fill the existing data gap after the strict ban on several POPs, high volume air sampling was conducted in PI to study the variability of atmospheric pesticidal POPs and polybrominated diphenyl ethers (PBDEs) during summer, pre-monsoon and monsoon. Emission source regions were tracked by using five days back trajectory analysis. Derived range of air concentrations in pg/m3 were: DDTs; BDL - 1976; HCHs, 260–1135, HCB; 52–135, chlordanes; 36–135, endosulfans; 66–1013. ∑6PBDE ranged between 25 and 155 with highest concentration in summer followed by pre-monsoon and monsoon. Atmospheric DDT and HCH in PI has drastically reduced by several thousand folds from the past report thereby showing the strict ban on agricultural use of these compounds. During monsoon fresh source of o,p′‑DDT, trans‑chlordane and α‑endosulfan was evident. Usually higher level of endosulphan sulfate in PI seems to be likely affected by the air mass originating from a neighbouring state Kerela, where endosulfan has been extensively used for cashew plantations. Similarly in summer, the day showing the highest level of PBDEs, the sample was concurrently impacted by air parcel comprised of two major clusters, 1 (25%) and 2 (49%) that traversed through the metropolitan cities like Bangalore and Chennai. Dominance of BDE-99 over BDE-47 in Parangipettai is in line with the PBDE profile reported from Chennai city during the similar time frame. Average concentration of tetra and penta BDE congeners in summer samples were nearly 2–3 folds higher than pre-monsoon or monsoon. Given the fact that strong localised source for heavier BDE congeners are lacking in PI, regional atmospheric transport from the strong emission source regions in Chennai.
AB - During 1990s, residues of several persistent organic pollutants (POPs) in different environmental matrices have been reported from a tropical coastal site, Parangipettai (PI), located along the bank of the Vellar River in Tamil Nadu. Hence to fill the existing data gap after the strict ban on several POPs, high volume air sampling was conducted in PI to study the variability of atmospheric pesticidal POPs and polybrominated diphenyl ethers (PBDEs) during summer, pre-monsoon and monsoon. Emission source regions were tracked by using five days back trajectory analysis. Derived range of air concentrations in pg/m3 were: DDTs; BDL - 1976; HCHs, 260–1135, HCB; 52–135, chlordanes; 36–135, endosulfans; 66–1013. ∑6PBDE ranged between 25 and 155 with highest concentration in summer followed by pre-monsoon and monsoon. Atmospheric DDT and HCH in PI has drastically reduced by several thousand folds from the past report thereby showing the strict ban on agricultural use of these compounds. During monsoon fresh source of o,p′‑DDT, trans‑chlordane and α‑endosulfan was evident. Usually higher level of endosulphan sulfate in PI seems to be likely affected by the air mass originating from a neighbouring state Kerela, where endosulfan has been extensively used for cashew plantations. Similarly in summer, the day showing the highest level of PBDEs, the sample was concurrently impacted by air parcel comprised of two major clusters, 1 (25%) and 2 (49%) that traversed through the metropolitan cities like Bangalore and Chennai. Dominance of BDE-99 over BDE-47 in Parangipettai is in line with the PBDE profile reported from Chennai city during the similar time frame. Average concentration of tetra and penta BDE congeners in summer samples were nearly 2–3 folds higher than pre-monsoon or monsoon. Given the fact that strong localised source for heavier BDE congeners are lacking in PI, regional atmospheric transport from the strong emission source regions in Chennai.
KW - Parangipettai
KW - OCPs
KW - PBDEs
KW - High volume air sampling
KW - Back Trajectory
U2 - 10.1016/j.scitotenv.2018.07.414
DO - 10.1016/j.scitotenv.2018.07.414
M3 - Journal article
VL - 649
SP - 1653
EP - 1660
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
ER -