Home > Research > Publications & Outputs > Siberian Miscanthus sacchariflorus accessions s...

Links

Text available via DOI:

View graph of relations

Siberian Miscanthus sacchariflorus accessions surpass the exceptional chilling tolerance of the most widely cultivated clone of Miscanthus x giganteus

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Charles P. Pignon
  • Idan Spitz
  • Erik J. Sacks
  • Uffe Jørgensen
  • Kirsten Kørup
  • Stephen P. Long
Close
<mark>Journal publication date</mark>1/07/2019
<mark>Journal</mark>GCB Bioenergy
Issue number7
Volume11
Number of pages12
Pages (from-to)883-894
Publication StatusPublished
Early online date26/02/19
<mark>Original language</mark>English

Abstract

Chilling temperatures (0–15°C) inhibit photosynthesis in most C4 grasses, yet photosynthesis is chilling tolerant in the ‘Illinois’ clone of the C4 grass Miscanthus x giganteus, a candidate cellulosic bioenergy crop. M. x giganteus is a hybrid between Miscanthus sacchariflorus and Miscanthus sinensis; therefore chilling-tolerant parent lines might produce hybrids superior to the current clone. Recently a collection of M. sacchariflorus from Siberia, the apparent low temperature limit of natural distribution, became available, which may be a source for chilling tolerance. The collection was screened for chilling tolerance of photosynthesis by measuring dark-adapted maximum quantum yield of PSII photochemistry (Fv/Fm) on plants in the field in cool weather. Superior accessions were selected for further phenotyping: plants were grown at 25°C, transferred to 10°C (chilling) for 15 days, and returned to 25°C for 7 days (recovery). Two experiments assessed: (a) light-saturated net photosynthetic rate (Asat) and operating quantum yield of PSII photochemistry (ΦPSII), (b) response of net leaf CO2 uptake (A) to intercellular [CO2] (ci). Three accessions showed superior chilling tolerance: RU2012-069 and RU2012-114 achieved Asat up to double that of M. x giganteus prior to and during chilling, due to increased ci - saturated photosynthesis (Vmax). RU2012-069 and RU2012-114 also maintained greater levels of ΦPSII during chilling, indicating reduced photodamage. Additionally, accession RU2012-112 maintained a stable Asat throughout the 15-day chilling period, while Asat continuously declined in other accessions; this suggests RU2012-112 could outperform others in lengthy chilling periods. Plants were returned to 25°C after the chilling period; M. x giganteus showed the weakest recovery after 1 day, but a strong recovery after 1 week. This study has therefore identified important genetic resources for the synthesis of improved lines of M. x giganteus, which could facilitate the displacement of fossil fuels by cellulosic bioenergy. © 2019 The Authors. GCB Bioenergy Published by John Wiley & Sons Ltd.