Home > Research > Publications & Outputs > Sol-gel alumina coating of wired mesh packing

Electronic data

  • Manuscript_coating_paper_ceramic_international_version_2 (1)

    Rights statement: This is the author’s version of a work that was accepted for publication in Ceramics International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ceramics International, 46, 13, 2020 DOI: 10.1016/j.ceramint.2020.05.043

    Accepted author manuscript, 1.06 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Sol-gel alumina coating of wired mesh packing

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>1/09/2020
<mark>Journal</mark>Ceramics International
Issue number13
Volume46
Number of pages11
Pages (from-to)20777-20787
Publication StatusPublished
Early online date11/05/20
<mark>Original language</mark>English

Abstract

Wired mesh packings have seen increasing applications to multiphase processes in recent years. Despite the high surface area, open structure and thermal and chemical resistance, wired mesh packings have a complex geometry which hinders some chemical applications, including changes of surface properties through application of a uniformly adhesive coating. In this work, the sol-gel deposition method of alumina coating ceramics was investigated for the first time on stainless steel wired mesh by using Dixon rings as example. The kinetics of deposition during the hydrolysis and polycondensation was followed for a range of initial composition of the coating such as the ratios of Al2O3 to water, acid content, polyethyleneimine binder content and the number of deposition cycles. Well-adhered alumina with a thickness up to 20 µm was successfully deposited. The molar ratios of acid to alumina and alumina to water of 0.25 and 0.01, respectively, 48 h of the aging time, 96 h of the mixing time and 2.1 g/L of polyethyleneimine binder formed a free of cracks coating of controlled thickness alumina on the Dixon rings.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Ceramics International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ceramics International, 46, 13, 2020 DOI: 10.1016/j.ceramint.2020.05.043