12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Spatial and temporal predictions of soil moistu...
View graph of relations

« Back

Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GAS-Flux model for an Alaskan catchment.

Research output: Contribution to journalJournal article

Published

Journal publication date1998
JournalHydrology and Earth System Sciences and Discussions
Journal number1
Volume2
Number of pages14
Pages51-64
Original languageEnglish

Abstract

By using topographic indices as derived from a Digital Terrain Models (DTM), it is possible to represent the heterogeneity within a landscape. This heterogeneity can reflect both long term evolutionary patterns seen in a landscape and the short term forcing of flow dynamics during storm events. By spatial analysis, the linkage between the geomorphological- hydrological-plant physiological phenomena can be examined. In this study, a direct link will be established between the topographically-driven hydrological phenomena and the eco-physiological response. The topographic distribution function of TOPMODEL is used to control the spatial and temporal flux of the channel flow and water table. The plant physiological model GAS-FLUX is used to give a spatially and temporally dissaggregated species-sensitive estimate of evapotranspiration flux. Evapotranspiration is sensitive to the vegetation phonology, to tundra community physiology and to the temperature regime. A simple linking of TOPMODEL and the GAS-FLUX model is applied to a summer snow-free period to the Imnavait catchment, Alaska (2.2 km2). A species-sensitive evapotranspiration model proved to give the highest quality results when validated against flow observations. Predicted dynamics of variable source area and the component hydrological processes are illustrated.