Home > Research > Publications & Outputs > Spatial and temporal predictions of soil moistu...
View graph of relations

Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GAS-Flux model for an Alaskan catchment.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>1998
<mark>Journal</mark>Hydrology and Earth System Sciences
Issue number1
Volume2
Number of pages14
Pages (from-to)51-64
Publication StatusPublished
<mark>Original language</mark>English

Abstract

By using topographic indices as derived from a Digital Terrain Models (DTM), it is possible to represent the heterogeneity within a landscape. This heterogeneity can reflect both long term evolutionary patterns seen in a landscape and the short term forcing of flow dynamics during storm events. By spatial analysis, the linkage between the geomorphological- hydrological-plant physiological phenomena can be examined. In this study, a direct link will be established between the topographically-driven hydrological phenomena and the eco-physiological response. The topographic distribution function of TOPMODEL is used to control the spatial and temporal flux of the channel flow and water table. The plant physiological model GAS-FLUX is used to give a spatially and temporally dissaggregated species-sensitive estimate of evapotranspiration flux. Evapotranspiration is sensitive to the vegetation phonology, to tundra community physiology and to the temperature regime. A simple linking of TOPMODEL and the GAS-FLUX model is applied to a summer snow-free period to the Imnavait catchment, Alaska (2.2 km2). A species-sensitive evapotranspiration model proved to give the highest quality results when validated against flow observations. Predicted dynamics of variable source area and the component hydrological processes are illustrated.