12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Spatial and temporal trends of POPs in Norwegia...
View graph of relations

« Back

Spatial and temporal trends of POPs in Norwegian and UK background air: implications for global cycling.

Research output: Contribution to journalJournal article

Published

Journal publication date1/02/2003
JournalEnvironmental Science and Technology
Volume37
Number of pages8
Pages454-461
Original languageEnglish

Abstract

Data are presented for PCBs and HCB measured by passive air samplers (SPMDs) along a latitudinal transect from the south of the UK to the north of Norway during 1998-2000. This work is part of an ongoing air sampling campaign in which data were previously gathered for 1994-1996. Comparisons of the masses of chemicals sequestered by the SPMDs during these different time intervals are used to investigate spatial and temporal trends. Results are discussed in the context of sources, long-range atmospheric transport, fractionation/cold condensation, and global clearance processes controlling ambient levels of POPs. Spatial trends show a decrease in absolute sequestered amounts of PCBs with increasing latitude i.e., with increasing distance from the source area. However, relative sequestered amounts of the homologue groups (expressed as a ratio to penta-PCB) show a clear latitudinal trend, with the relative contribution of the lighter congeners increasing with increasing latitude, providing evidence of latitudinal fractionation. Absolute amounts of HCB increase with latitude, suggesting this compound is undergoing cold condensation. Sequestered amounts of PCBs generally decreased between the two sampling periods by a factor 2-5 over 4 years, suggesting half-lives on the order of 1.7-4 years. The relative rates of decline (1998-2000 data as a percentage of the 1994-1996 data) were compared for different congeners and latitudes. No clear latitudinal trends were found, with all sites/congeners showing a similar marked decline over time to ca. 30% of the former value. We discuss the interpretation of these observations and conclude they imply that the underlying trends of current ambient levels of PCBs in European background air are still largely controlled by primary emissions, rather than recycling/secondary emissions from the major environmental repositories such as soils or water bodies.

Bibliographic note

RAE_import_type : Journal article RAE_uoa_type : Earth Systems and Environmental Sciences